Information in the Degree Programme Tables may still be subject to change in response to Covid-19

University Homepage
DRPS Homepage
DRPS Search
DRPS Contact
DRPS : Course Catalogue : School of Informatics : Informatics

Undergraduate Course: Computational Complexity (INFR11102)

Course Outline
SchoolSchool of Informatics CollegeCollege of Science and Engineering
Credit level (Normal year taken)SCQF Level 11 (Year 4 Undergraduate) AvailabilityAvailable to all students
SCQF Credits10 ECTS Credits5
SummaryThis module studies the problem of classifying computational problems according to their intrinsic difficulty or 'complexity'. We begin by defining a standard computational model, the Turing machine, which is useful for abstracting out complexity aspects of computational problems. We define various complexity resources, such as time, space, non-determinism , randomness and non-uniformity, and learn how to classify computational problems according to their resource requirements. Among other topics, we discuss the central problem of theoretical computer science, the P vs NP problem, and explain its importance using the notions of reductions and completeness.
Course description * The computational model: Turing machines
* NP and NP completeness
* Space complexity
* Diagonalisation
* The polynomial hierarchy
* Circuits
* Randomised computation
* Counting complexity

Relevant QAA Computing Curriculum Sections: Concurrency and Parallelism, Data Structures and Algorithms, Theoretical Computing
Entry Requirements (not applicable to Visiting Students)
Pre-requisites Co-requisites
Prohibited Combinations Other requirements This course is open to all Informatics students including those on joint degrees. For external students where this course is not listed in your DPT, please seek special permission from the course organiser.

Participants should have some facility with mathematical modes of reasoning.
Information for Visiting Students
High Demand Course? Yes
Course Delivery Information
Academic year 2020/21, Available to all students (SV1) Quota:  None
Course Start Semester 1
Timetable Timetable
Learning and Teaching activities (Further Info) Total Hours: 100 ( Lecture Hours 20, Programme Level Learning and Teaching Hours 2, Directed Learning and Independent Learning Hours 78 )
Assessment (Further Info) Written Exam 50 %, Coursework 50 %, Practical Exam 0 %
Additional Information (Assessment) Students will be given written assignments to reinforce the material taught in class. This includes two marked coursework as well as bi-weekly tutorial sheets. The tutorial sheets will not be marked, but their solutions will be discussed during the tutorials.

Each coursework contains five problems. The coursework will be focusing on testing basic computational complexity notions and solving problems related to them. Mathematical skills will be important to solve these problems. One should expect to spend about 2-10 hours on each coursework.
Feedback Not entered
Exam Information
Exam Diet Paper Name Hours & Minutes
Main Exam Diet S1 (December)2:00
Learning Outcomes
On completion of this course, the student will be able to:
  1. Students will be able to formulate computational models with resource constraints, and be able to describe relationships between these models.
  2. Students will be able to analyse computational problems from a complexity perspective, and so locate them within the complexity landscape.
  3. Students will be able to apply mathematical skills and knowledge from earlier years (eg., from logic and discrete mathematics) to concrete problems in computational complexity.
  4. Students will gain an appreciation of the broader importance of fundamental problems in computer science, such as the P vs NP problem.
Reading List
1. Sanjeev Arora and Boaz Barak, 'Computational Complexity: A Modern Approach', Cambridge University
Press, 2009. Required
2. Michael Sipser, 'Introduction to the Theory of Computation', PWS, 1997. Background reading
3. Christos Papadimitriou, 'Computational Complexity', Addison-Wesley, 1994. Supplementary reading
4. Uwe Schoening, 'Gems of Theoretical Computer Science', Springer Verlag, 1998. Supplementary
Additional Information
Course URL
Graduate Attributes and Skills Not entered
KeywordsNot entered
Course organiserDr Heng Guo
Tel: (0131 6)51 3175
Course secretaryMiss Clara Fraser
Tel: (0131 6)51 4164
Help & Information
Search DPTs and Courses
Degree Programmes
Browse DPTs
Humanities and Social Science
Science and Engineering
Medicine and Veterinary Medicine
Other Information
Combined Course Timetable
Important Information