Undergraduate Course: Randomized Algorithms (INFR11201)
Course Outline
School | School of Informatics |
College | College of Science and Engineering |
Credit level (Normal year taken) | SCQF Level 11 (Year 4 Undergraduate) |
Availability | Available to all students |
SCQF Credits | 10 |
ECTS Credits | 5 |
Summary | This course is about probabilistic methods and their application to computer science. The course introduces basic models and techniques and applies these techniques to the design of various randomized algorithms, data structures, and distributed protocols. Special emphasis will be given on applications of these ideas to other areas of computer science (e.g. networking, machine learning, etc).
*** This Course is renamed from Randomness and Computation (INFR11089) from 2020-21 *** |
Course description |
- Introduction: Las Vegas and Monte Carlo algorithms
(Elementary Examples: checking identities, fingerprinting)
- Moments, Deviations and Tail Inequalities
(Balls and Bins, Coupon Collecting, stable marriage, routing)
- Randomization in Sequential Computation
(Data Structures, Graph Algorithms)
* Randomization in Parallel and Distributed Computation
(algebraic techniques, matching, sorting, independent sets)
* Randomization in Online Computation
(online model, adversary models, paging, k-server)
- The Probabilistic Method
(threshold phenomena in random graphs, Lovasz Local Lemma)
- Random Walks and Markov Chains
(hitting and cover times, Markov chain Monte Carlo)
|
Entry Requirements (not applicable to Visiting Students)
Pre-requisites |
It is RECOMMENDED that students have passed
Algorithms and Data Structures (INFR10052)
|
Co-requisites | |
Prohibited Combinations | |
Other requirements | This course is open to all Informatics students including those on joint degrees. For external students where this course is not listed in your DPT, please seek special permission from the course organiser.
A mathematical course with no programming.
Basic knowledge of (1) discrete probability and (2) algorithms is required. In particular, the students should have a good understanding of the following concepts:
(1) probability spaces and events, conditional probability and independence, random variables, expectations and moments, conditional expectation.
(2) asymptotic notation, basic sorting algorithms (Quick-sort, Merge-sort), basic graph algorithms (BFS, DFS, Dijkstra). |
Information for Visiting Students
Pre-requisites | None |
High Demand Course? |
Yes |
Course Delivery Information
Not being delivered |
Learning Outcomes
On completion of this course, the student will be able to:
- Apply fundamental tools in discrete probability (e.g. concentration inequalities, probabilistic method, random walks).
- Know randomized algorithms and data structures for selected combinatorial and graph problems.
- Be able to analyze error probabilities and expected running time of randomized algorithms.
- Understand the fundamentals of Markov chains and their algorithmic applications.
- Apply Monte Carlo methods such as MCMC.
|
Reading List
Probability and Computing: Randomized Algorithms and Probabilistic Analysis, by Michael Mitzenmacher and Eli Upfal. (Required)
Randomized Algorithms, by Rajeev Motwani and Prabhakar Raghavan. (Useful) |
Additional Information
Graduate Attributes and Skills |
Not entered |
Special Arrangements |
This course is open to all Informatics students including those on joint degrees. For external students where this course is not listed in your DPT, please seek special permission from the course organiser.
A mathematical course with no programming.
Basic knowledge of (1) discrete probability and (2) algorithms is required. In particular, the students should have a good understanding of the following concepts:
(1) probability spaces and events, conditional probability and independence, random variables, expectations and moments, conditional expectation.
(2) asymptotic notation, basic sorting algorithms (Quick-sort, Merge-sort), basic graph algorithms (BFS, DFS, Dijkstra). |
Keywords | Not entered |
Contacts
Course organiser | Dr Kousha Etessami
Tel: (0131 6)50 5197
Email: Kousha@inf.ed.ac.uk |
Course secretary | Miss Clara Fraser
Tel: (0131 6)51 4164
Email: clara.fraser@ed.ac.uk |
|
|