Postgraduate Course: Structural Mechanics (IMFSE) (PGEE08002)
Course Outline
School  School of Engineering 
College  College of Science and Engineering 
Credit level (Normal year taken)  SCQF Level 8 (Postgraduate) 
Availability  Not available to visiting students 
SCQF Credits  12 
ECTS Credits  6 
Summary  This course engages students with the fundamental principles of Structural Mechanics relevant to civil and mechanical engineers. Specific topics including: equilibrium, stress, strain, axial load, torsion, bending, shear, and deflections in structural elements including beams, columns, struts, ties, and trusses. 
Course description 
T1 Introduction and Overview: Course structure and organisation. What is structural mechanics?¿¿
T2 Structural forms: Structural elements and examples. Strength and stiffness. Loads.
T3 Global Equilibrium: Forces and moments, point and distributed loads. Support conditions. Global equilibrium of structures. Concept of structural determinacy and indeterminacy.
T4 Free Body Diagrams and Stress Resultants
Truss equilibrium. Stress resultants in struts (axial load), shafts (torsion), beams (shear and bending) and pressure vessels (membrane forces).
T5 Members carrying Axial Load
Simple mechanical behaviour. Deformation (due to load and thermal strain).
T6 Members carrying Torsion
Torsion of circular shafts and other closed sections. Torsional stiffness and deformation.
T7 Stress Resultants in Determinate Beams (1)
Sign conventions. Shear force and bending moment diagrams.
T8 Stress Resultants in Determinate Beams (2)
Relationships between w, V, and M
T9 Bending of Beams (1)
Euler Beam Theory. Curvature. Plane sections. Bending strains
T10 Bending of Beams (2)
Euler Beam Theory. Elastic bending stresses. The neutral axis. Moment  curvature  stress  strain relationships.
T11 Deflection of Beams
Double integration of curvature to find deflection. Support boundary conditions. Beam stiffness
T12 Superposition of Deflection
Deflection coefficients. Superposition of deflections.
T13 Geometric Section Properties
Area, 2nd moments of area, Parallel axis theorem. Rectangular, circular, T and I sections
T14 Composite Beam Sections
Modular ratio and equivalent section. Stress and strain diagrams.
T15 Shear Stresses in Beams (1)
Complimentary shear. Derivation of shear stress formulae.
T16 Shear Stresses in Beams (2)
Shear flow. Rectangular, box and flanged sections.
T17 Combined Loading
Combining axial, torsion, shear and biaxial bending stresses.
T18 Stress and Strain Transformation
Plane stress, plane strain. Mohr¿s circle.
Tutorials:
9 ¿Tutorials¿ (TBD)
The course is examined through three coursework elements, one of which is a virtual laboratory through video recordings.

Entry Requirements (not applicable to Visiting Students)
Prerequisites 

Corequisites  
Prohibited Combinations  
Other requirements  None 
Course Delivery Information

Academic year 2020/21, Not available to visiting students (SS1)

Quota: None 
Course Start 
Semester 1 
Timetable 
Timetable 
Learning and Teaching activities (Further Info) 
Total Hours:
120
(
Lecture Hours 20,
Seminar/Tutorial Hours 9,
Supervised Practical/Workshop/Studio Hours 6,
Feedback/Feedforward Hours 1,
Formative Assessment Hours 1,
Summative Assessment Hours 3,
Programme Level Learning and Teaching Hours 2,
Directed Learning and Independent Learning Hours
78 )

Assessment (Further Info) 
Written Exam
0 %,
Coursework
100 %,
Practical Exam
0 %

Additional Information (Assessment) 
Coursework 100% 
Feedback 
Feedback delivered after each coursework element. 
No Exam Information 
Learning Outcomes
On completion of this course, the student will be able to:
 Describe and manipulate fundamental concepts of stress, strain, and deformation in members carrying axial, bending, shear, and torsional loads;
 Determine how statically determinate trusses and beams carry load; for beams using diagrams of bending moment and shear force, and evaluate the resulting elastic deflections of the beams;
 Analyse structural cross sections, so as to determine the elastic stress and strain distributions, as well as the deformations, resulting from axial, bending and torsional actions; and
 Describe and manipulate relevant concepts of combined loadings and stress and strain transformation.

Reading List
J.M. Gere, "Mechanics of Materials", 6th Edition, Thomson. (A comprehensive treatment, and used in other Civil Engineering courses);
J.E. Shigley, C.R. Mischke, R.G. Budynas, "Mechanical Engineering Design", 7th edition, McGraw Hill. (A fairly brief treatment, but also used in other Mechanical Engineering courses). 
Additional Information
Graduate Attributes and Skills 
Not entered 
Keywords  Equilibrium,stress,strain,axial load,torsion,bending,shear,deflections,beams,columns,stru 
Contacts
Course organiser  Dr Thomas Reynolds
Tel: (0131 6)50 5633
Email: treynold@exseed.ed.ac.uk 
Course secretary  Mr Craig Hovell
Tel: (0131 6)51 7080
Email: c.hovell@ed.ac.uk 

