Information in the Degree Programme Tables may still be subject to change in response to Covid-19

University Homepage
DRPS Homepage
DRPS Search
DRPS Contact
DRPS : Course Catalogue : School of Engineering : Postgrad (School of Engineering)

Postgraduate Course: Mechanical Engineering Fundamentals of Renewable Energy (PGEE11023)

Course Outline
SchoolSchool of Engineering CollegeCollege of Science and Engineering
Credit level (Normal year taken)SCQF Level 11 (Postgraduate) AvailabilityAvailable to all students
SCQF Credits10 ECTS Credits5
SummaryThe course will introduce fundamental concepts from mechanical engineering that will facilitate understanding and quantitative analysis of renewable energy systems. This will include concepts from the fields of structural mechanics, dynamics of mechanical systems, and fluid statics/dynamics.
Course description The course provides a grounding in key physical concepts and analytical methods to enable understanding of and quantitative analysis of renewable energy systems. Lecture material will cover:
- Structural mechanics;
- Newtonian Dynamics;
- Fluid statics and dynamics.
These are presented within the context of and applied to renewable energy systems
Entry Requirements (not applicable to Visiting Students)
Pre-requisites Co-requisites
Prohibited Combinations Students MUST NOT also be taking Electrical Engineering Fundamentals of Renewable Energy (PGEE11024)
Other requirements None
Information for Visiting Students
High Demand Course? Yes
Course Delivery Information
Academic year 2020/21, Available to all students (SV1) Quota:  None
Course Start Semester 1
Timetable Timetable
Learning and Teaching activities (Further Info) Total Hours: 100 ( Lecture Hours 22, Seminar/Tutorial Hours 7, Formative Assessment Hours 2, Summative Assessment Hours 2, Programme Level Learning and Teaching Hours 2, Directed Learning and Independent Learning Hours 65 )
Assessment (Further Info) Written Exam 100 %, Coursework 0 %, Practical Exam 0 %
Additional Information (Assessment) Exam 100%
Feedback Not entered
Exam Information
Exam Diet Paper Name Hours & Minutes
Main Exam Diet S1 (December)Mechanical Engineering Fundamentals of Renewable Energy2:00
Learning Outcomes
On completion of this course, the student will be able to:
  1. Have an appreciation of the role of key mechanical engineering concepts in the design and operation of renewable energy systems;
  2. Have an awareness and understanding of some of the challenges of power conversion from renewable energy sources.
  3. Have a good knowledge of key mechanical engineering concepts from structural mechanics, dynamics of mechanical systems, fluid statics and dynamics;
  4. Be able to perform calculations from these concepts that facilitate the design and operation of renewable energy systems.
Reading List
The following references may be useful to students:

Solid mechanics

1. Gere, J.M and Goodno, B.J. Mechanics of Materials, SI Edition, 7th edition, 2009, Cengage Learning, ISBN-13:978-0-495-43807-6.
2. Beer, F.P, Johnston, E.R and Dewolf, J.T. Mechanics of Materials, Fourth edition, 2006, McGraw Hill, ISBN 007-124999-0.
3. Philpot, T. A. Mechanics of Materials: An Integrated Learning System, 2011, John Wiley & Sons, Inc, ISBN 978-0-470-56514-8 (hardback).
4. J.L.Meriam and L.G. Kraige, 1993, Engineering mechanics, Dynamics, Vol.2, 3rd edition, John Wiley &Sons, Inc.

Fluid mechanics:

1. Douglas, J.F, Gasiorek, J.M, Swaffield, J.A and Jack L.B, 2005, Fluid Mechanics, Fifth Edition, Pearson Prentice Hall.
2. Irving Granet, 1996, Fluid mechanics, 4th Edition, Prentice Hill.
3. J.F.Douglas & R.D.Matthews, 1996, Solving problems in Fluid mechanics, Vol. 1 & II, 3rd edition, Longman Group limited.
Additional Information
Graduate Attributes and Skills Not entered
KeywordsNot entered
Course organiserDr John Chick
Tel: (0131 6)50 5675
Course secretaryMrs Michelle Burgos Almada
Help & Information
Search DPTs and Courses
Degree Programmes
Browse DPTs
Humanities and Social Science
Science and Engineering
Medicine and Veterinary Medicine
Other Information
Combined Course Timetable
Important Information