Information in the Degree Programme Tables may still be subject to change in response to Covid-19

University Homepage
DRPS Homepage
DRPS Search
DRPS Contact
DRPS : Course Catalogue : School of Engineering : Postgrad (School of Engineering)

Postgraduate Course: Marine Operations, Condition Monitoring and Reliability (IDCORE) (PGEE11087)

Course Outline
SchoolSchool of Engineering CollegeCollege of Science and Engineering
Credit level (Normal year taken)SCQF Level 11 (Postgraduate) AvailabilityNot available to visiting students
SCQF Credits10 ECTS Credits5
SummaryThis course develops an advanced understanding of design and installation requirements in the fields of:

i) Mooring and Anchor Design,
ii) Deployment techniques and
iii) Risk and Project Management.

Students will gain competence in quasi-static and dynamic mooring analysis, anchoring and mooring methods and the implementation of recognised design codes, and competence with computational design tools that are routinely adopted in industry, for analysis and design tasks.
Course description - Offshore project management - Offshore design process, offshore installation and maintenance process, identify and manage cost drivers [4 hours]

- Offshore risk management - collision risk mitigation, concept of risk assessment, subjective and quantitative risk assessment; [4 hours;

- Offshore design standards and their application [4 hours;

- Instrumentation and Condition Monitoring of ORE [4 hours];

- Introduction into station keeping of fixed and floating structures [4 hours];

- Introduction in to numerical simulation of moorings [4 hours];

- Quasi-static cable analysis; dynamic cable analysis, Cable dynamics [4 hours];

- Uncertainties and cost implications associated with the reliability assessment of ORE converters [4 hours];

- Failure rate estimate and Bayesian approach [4 hours];

- Reliability and failure of structure and individual components [4 hours].
Entry Requirements (not applicable to Visiting Students)
Pre-requisites Co-requisites
Prohibited Combinations Other requirements None
Additional Costs none
Course Delivery Information
Academic year 2020/21, Not available to visiting students (SS1) Quota:  None
Course Start Semester 2
Timetable Timetable
Learning and Teaching activities (Further Info) Total Hours: 100 ( Programme Level Learning and Teaching Hours 2, Directed Learning and Independent Learning Hours 98 )
Assessment (Further Info) Please contact the School directly for a breakdown of Assessment Methods
Additional Information (Assessment) coursework 60%, presentation 40%
Feedback Not entered
No Exam Information
Learning Outcomes
- detailed knowledge and understanding of offshore risk and project management;

- competence in undertaking response analyses of fixed and floating structures;

- an understanding of concepts from a range of areas including some outside engineering and the ability to apply them effectively in engineering projects;

- a wide knowledge and comprehensive understanding of design processes and standards required for this installation of an offshore structure;

- an ability to apply theoretical principals and computerbased models for solving problems in offshore engineering applications;

- an ability to implement condition monitoring systems for ORE applications.
Reading List
Smith, D.J., 2005, Reliability, Maintainability and Risk, Elsevier.
Rausand, M., H°yland, A., 2004. System Reliability Theory. Models Statistical Methods and Applications. Series in Probability and Statistics, second revised ed., Wiley.

O'Connor, P.D.T., 2008. Practical Reliability Engineering, fourth edition, Chichester: Wiley, 2002.

Det Norske Veritas [DNV], 2005. Guidelines on design and operation of wave energy converters. Technical Report, Carbon Trust BSI, 2003. BS 5760-4:2003, Reliability of Systems, Equipment and Components. Guide to the Specification of Dependability Requirements.

Chakrabarti, S.K. Offshore Structure Modelling. 1994, Advanced Series on Ocean Engineering - Vol. 9, World Scientific Publishing, London..

Benbouzid, A, et al., 2009, A brief status on condition monitoring and fault diagnosis in wind energy conversion systems, Renewable and Sustainable Energy Reviews, 13, 9, pp. 2629-2636.

European Commission/DG TREN. Advanced maintenance and repair for offshore wind farms using fault prediction and condition monitoring techniques. Final report. NNE5/2001/710, FP5 Contract; 2005.

Hyers, R.W. et al,, 2006, Condition monitoring and prognosis of utility scale wind turbines, Energy Materials, 1,3, pp. 187-203.
Additional Information
Graduate Attributes and Skills Not entered
Special Arrangements n/a
KeywordsOffshore Renewable Energy,Professional Doctorate
Course organiserProf David Ingram
Tel: (0131 6)51 9022
Course secretaryDr Katrina Tait
Tel: (0131 6)51 9023
Help & Information
Search DPTs and Courses
Degree Programmes
Browse DPTs
Humanities and Social Science
Science and Engineering
Medicine and Veterinary Medicine
Other Information
Combined Course Timetable
Important Information