Information in the Degree Programme Tables may still be subject to change in response to Covid-19

University Homepage
DRPS Homepage
DRPS Search
DRPS Contact
DRPS : Course Catalogue : School of Engineering : Postgrad (School of Engineering)

Postgraduate Course: Polymer Science and Engineering (MSc) (PGEE11152)

Course Outline
SchoolSchool of Engineering CollegeCollege of Science and Engineering
Credit level (Normal year taken)SCQF Level 11 (Postgraduate) AvailabilityNot available to visiting students
SCQF Credits10 ECTS Credits5
SummaryThis course gives an introduction to polymer science and engineering, covering the properties of polymers, polymer reactions, polymer forming and production processes and polymer characterisation.
Course description 1. Introduction to polymers: Overview of applications
2. Polymer classification and terminology
3. Viscoelastic behaviour
4. Glass transition
5. Rubber Elasticity
6. Solution and phase behavior
7. Polymer crystallinity
8. Polymer structure vs thermal, rheological and physical properties
9. Making polymers - polymerisation mechanisms, free radical chain reactions, ionic polymerisation, condensation polymerisation, cooridination polymerisation
10. Copolymerisation
11. Polymer characterisation
12. Polymerisation in reactors - plug flow, CSTR, fluidised bed, batch reactor
Entry Requirements (not applicable to Visiting Students)
Pre-requisites Co-requisites
Prohibited Combinations Other requirements None
Course Delivery Information
Not being delivered
Learning Outcomes
On completion of this course, the student will be able to:
  1. CS: Explain the relationship between polymer properties (thermal, rheological, mechanical), and polymer microstructure and molecular weight; Relate polymer properties to their processing and uses; Explain methods for determining the microstructure and molecular weight of polymers and describe the significance of polymer solubility, melting point and glass transition temperature.
  2. K&U: Describe different types of polymerisation process, and the significance in each of: initiation, propagation, termination, branching; and, for copolymerisation, reactivity ratios and monomer ratio.
  3. Practice: Calculate average molecular weights of polymers knowing the conversion and/or other reaction conditions; Calculate the ratio of monomer types in copolymerisation and predict the type of sequence obtained; Determine the data required for the design of polymerisation reactors of a variety of types: batch, plug-flow, CSTR, heterogeneous (emulsion, fluidised bed), and predict the mean residence time and size of reactor for simplified cases.
Reading List
1. McCrum, Buckley, Bucknall, "Principles of Polymer Engineering", Oxford Science, 2nd edition 1997 (Recommended reading)
2. Osswald and Menges, "Materials Science of Polymers for Engineers", Hanser, 2nd edition 2003 (Recommended reading)
3. Powell & Jan Ingen Housz, "Engineering with Polymers", Stanley Thornes, 2nd edition 1998 (Recommended reading)
4. Fried, "Polymer Science and Technology", Prentice-Hall, 2nd edition 2003 (Background reading)
5. Birley Haworth, Batchelor, "Physics of Plastics: Processing, Properties and Materials Engineering", Hanser, 1992 (Recommended reading)
6. Ebewele, "Polymer Science and Technology", CRC Press, 2000 (Background reading)
7. Painter & Coleman, "Fundamentals of Polymer Science", Technomic, 2nd edition 1997 (Recommended reading)
8. Ehrenstein, "Polymeric Materials", Hanser, 2001 (Recommended reading)
9. Rudin, "The Elements of Polymer Science and Engineering", Academic Press, 2nd edition, 1998 (Recommended reading)
10. Billmeyer, "Textbook of Polymer Science", Wiley, 3rd edition, 1984 (Recommended reading)
Additional Information
Graduate Attributes and Skills Not entered
KeywordsPolymer Science,Reactors,Properties,Polymer processing,Characterisation
Course organiserDr Cher Hon Lau
Tel: (0131 6)50 7813
Course secretaryMrs Shona Barnet
Tel: (0131 6)51 7715
Help & Information
Search DPTs and Courses
Degree Programmes
Browse DPTs
Humanities and Social Science
Science and Engineering
Medicine and Veterinary Medicine
Other Information
Combined Course Timetable
Important Information