THE UNIVERSITY of EDINBURGH

DEGREE REGULATIONS & PROGRAMMES OF STUDY 2020/2021

Information in the Degree Programme Tables may still be subject to change in response to Covid-19

University Homepage
DRPS Homepage
DRPS Search
DRPS Contact
DRPS : Course Catalogue : School of Physics and Astronomy : Undergraduate (School of Physics and Astronomy)

Undergraduate Course: Quantum Theory (PHYS11019)

Course Outline
SchoolSchool of Physics and Astronomy CollegeCollege of Science and Engineering
Credit level (Normal year taken)SCQF Level 11 (Year 4 Undergraduate) AvailabilityAvailable to all students
SCQF Credits10 ECTS Credits5
SummaryIn this course we review the fundamental ideas of quantum mechanics, introduce the path integral for a non-relativistic point particle, and use it to derive time-dependent perturbation theory and the Born series for non-relativistic scattering. The course concludes with an introduction to relativistic quantum mechanics and the ideas of quantum field theory.
Course description Quantum kinematics: slit experiments, Hilbert space, Dirac notation, complete sets of states, operators and observables, space as a continuum, wave number and momentum.

Time evolution: the amplitude for a path, the Feynman path integral, relation to the classical equations of motion and the Hamilton-Jacobi equations.

Evaluating the path integral for the free particle and the harmonic oscillator. Derivation of the Schroedinger equation from the path integral. The Schroedinger and Heisenberg pictures for time dependence in quantum mechanics. The transition amplitude as a Green function. Charged particle in an EM field, Aharonov-Bohm effect, Transition elements, Ehrenfest's Theorem and Zitterbewegung.

Time-dependent perturbation theory using path integrals: time ordering and the Dyson series, perturbative scattering theory, the Born series, differential cross-sections, the operator formulation, time dependent transitions.

Feynman perturbation theory and Feynman diagrams.

Relativistic quantum theory: the Klein-Gordon and Dirac equations. Negative energy solutions, spin, necessity for a many particle interpretation. Brief introduction to the basic ideas of quantum field theory.

In the stated learning outcomes, the generic word "understand" is used to mean that the student must be able to use what s/he has learned to solve a range of unseen problems. The style and level of difficulty of these problems may be found from solving the examples provided in the course, and by the study of past exam papers. A more complete specification of the material included in the course may be found in the syllabus. There will be a two-hour workshop each week.
Entry Requirements (not applicable to Visiting Students)
Pre-requisites Students MUST have passed: Principles of Quantum Mechanics (PHYS10094) OR Quantum Mechanics (PHYS09053)
It is RECOMMENDED that students have passed Lagrangian Dynamics (PHYS10015) AND ( Honours Complex Variables (MATH10067) AND Electromagnetism and Relativity (PHYS10093)) OR Methods of Theoretical Physics (PHYS10105)
Co-requisites
Prohibited Combinations Other requirements At least 80 credit points accrued in courses of SCQF Level 9 or 10 drawn from Schedule P or Q
Information for Visiting Students
Pre-requisitesKnowledge of quantum mechanics at the level of the University of Edinburgh courses listed above. Some knowledge of Lagrangian dynamics, complex analysis, electromagnetism and special relativity is highly recommended.
High Demand Course? Yes
Course Delivery Information
Academic year 2020/21, Available to all students (SV1) Quota:  None
Course Start Semester 1
Timetable Timetable
Learning and Teaching activities (Further Info) Total Hours: 100 ( Lecture Hours 22, Supervised Practical/Workshop/Studio Hours 20, Summative Assessment Hours 2, Revision Session Hours 2, Programme Level Learning and Teaching Hours 2, Directed Learning and Independent Learning Hours 52 )
Assessment (Further Info) Written Exam 100 %, Coursework 0 %, Practical Exam 0 %
Additional Information (Assessment) Degree Examination, 100%
Visiting Student Variant Assessment
Degree Examination, 100%
Feedback Feedback to students is provided in several ways including one-to-one discussion in workshops and pre-exam revision sessions.
Exam Information
Exam Diet Paper Name Hours & Minutes
Main Exam Diet S2 (April/May)2:00
Academic year 2020/21, Part-year visiting students only (VV1) Quota:  None
Course Start Semester 1
Timetable Timetable
Learning and Teaching activities (Further Info) Total Hours: 100 ( Lecture Hours 22, Supervised Practical/Workshop/Studio Hours 20, Summative Assessment Hours 2, Revision Session Hours 2, Programme Level Learning and Teaching Hours 2, Directed Learning and Independent Learning Hours 52 )
Assessment (Further Info) Written Exam 100 %, Coursework 0 %, Practical Exam 0 %
Additional Information (Assessment) Degree Examination, 100%
Visiting Student Variant Assessment
Degree Examination, 100%
Feedback Feedback to students is provided in several ways including one-to-one discussion in workshops and pre-exam revision sessions.
Exam Information
Exam Diet Paper Name Hours & Minutes
Main Exam Diet S2 (April/May)Semester 1 Visiting Students Only2:00
Learning Outcomes
On completion of this course, the student will be able to:
  1. Understand the basic principles of quantum mechanics and apply them to solve problems in quantum mechanics.
  2. Understand and apply the path integral representation of quantum mechanics.
  3. Understand and apply the operator formulation of quantum mechanics.
  4. Understand time dependent perturbation theory in quantum mechanics and apply perturbation theory to describe scattering.
  5. Understand the form and construction of relativistic wave equations and appreciate the need for quantum field theory.
Reading List
As a stimulating introduction to the course: Lectures on Physics, Volume III, RP Feynman.

The course doesn't follow any book in detail, but the following textbooks contain material that is closest to the level of the course:

Quantum Mechanics and Path Integrals, RP Feynman and AR Hibbs -- the original text on the subject: rather old and a little long-winded but probably closest to the course.

There is a new 'Emended Edition' of Feynman and Hibbs by Daniel Styer (Dover Publications). It contains many corrections to the original, and is much cheaper!

Principles of Quantum Mechanics, R Shankar.

Modern Quantum Mechanics, JJ Sakurai.

See also the second half of the book:

Path Integrals in Physics, Volume I: Stochastic Processes and Quantum Mechanics, M Chaichian and A Demichev.

More advanced texts:

Path Integrals in Quantum Mechanics, Statistics, Polymer Physics, and Financial Markets, H Kleinert - possibly the most complete of all texts on path integrals, but rather long.

Path Integrals in Quantum Mechanics, J Zinn-Justin -- ditto, but somewhat less verbose than Kleinert.

Quantum Theory, A Wide Spectrum, EB Manoukian -- one of the most comprehensive books on Quantum Theory in existence, and it's available electronically (i.e. free!) from Springer via the University Library website.
Additional Information
Graduate Attributes and Skills Not entered
Additional Class Delivery Information Workshop/tutorial sessions, as arranged.
KeywordsQuaTh
Contacts
Course organiserDr Roger Horsley
Tel: (0131 6)50 6481
Email: rhorsley@ph.ed.ac.uk
Course secretaryDr Rebecca Hasler
Tel:
Email: becca.hasler@ed.ac.uk
Navigation
Help & Information
Home
Introduction
Glossary
Search DPTs and Courses
Regulations
Regulations
Degree Programmes
Introduction
Browse DPTs
Courses
Introduction
Humanities and Social Science
Science and Engineering
Medicine and Veterinary Medicine
Other Information
Combined Course Timetable
Prospectuses
Important Information