Timetable information in the Course Catalogue may be subject to change.

University Homepage
DRPS Homepage
DRPS Search
DRPS Contact
DRPS : Course Catalogue : School of Informatics : Informatics - Distance Learning

Postgraduate Course: Performance Programming (INFD11021)

Course Outline
SchoolSchool of Informatics CollegeCollege of Science and Engineering
Credit level (Normal year taken)SCQF Level 11 (Postgraduate)
Course typeOnline Distance Learning AvailabilityNot available to visiting students
SCQF Credits10 ECTS Credits5
SummaryApplication performance is one of the key requirements for HPC applications. However this is one of the more difficult requirements to satisfy:

- Issues effecting performance often vary between different hardware and software environments. This requires performance issues to be frequently re-visited as the hardware and software environment changes.
- Performance programming requires detailed knowledge of the underlying environment
- The design decisions necessary to achieve good performance are often in conflict with other desirable properties of the program.

After taking this course students should have a good practical understanding of the general issues and methodologies associated with designing building and refactoring codes to meet performance requirements. In addition they will have an overview of a number of subjects that are important in the understanding of performance on current systems.
Course description The course will cover the following topics:
- Overview of performance programming. Methodology, the optimisation cycle.
- Designing for performance. Encapsulation as an aid to performance tuning.
- Tools for performance programming. Profilers and code instrumentation.
- Compilers and compiler optimisation.
- Memory hierarchies, Memory structures and associated optimisations.
- Performance tuning for shared memory.
- Floating point performance. Pipelines, SIMD, vectorisation.
Entry Requirements (not applicable to Visiting Students)
Pre-requisites Co-requisites
Prohibited Combinations Other requirements None
Course Delivery Information
Academic year 2022/23, Not available to visiting students (SS1) Quota:  None
Course Start Semester 1
Course Start Date 19/09/2022
Timetable Timetable
Learning and Teaching activities (Further Info) Total Hours: 100 ( Online Activities 30, Programme Level Learning and Teaching Hours 2, Directed Learning and Independent Learning Hours 68 )
Assessment (Further Info) Written Exam 0 %, Coursework 100 %, Practical Exam 0 %
Additional Information (Assessment) 100% coursework split into two submissions: worth 25% and 75% respectively. The first comprises a plan for the work to be undertaken in the second .
Feedback Provided through regular weekly tutorial sessions and discussions on output of practical exercises as well as on assessed work.
No Exam Information
Learning Outcomes
On completion of this course, the student will be able to:
  1. Understand the appropriate methodology when attempting to improve code performance.
  2. Understand how performance is achieved via hardware, compilers and operating systems.
  3. Appreciate the limitations of systems and recognise when these will have a serious impact.
  4. Interpret the observed performance of code in terms of how its execution is realised on the system.
  5. Identify code regions appropriate for manual optimisation and propose, implement and evaluate optimisations on these regions.
Reading List
Additional Information
Graduate Attributes and Skills Programming
Solution Exploration and Evaluation
Communication of technical information via written report
Time management
Planning, implementation, and analysis
KeywordsPerformance Programming,HPC,EPCC,Parallelism,Optimisation,Profilers,Compilers,SIMD,Vectors,Online
Course organiserMr William Jackson
Course secretaryMr James Richards
Tel: 90131 6)51 3578
Help & Information
Search DPTs and Courses
Degree Programmes
Browse DPTs
Humanities and Social Science
Science and Engineering
Medicine and Veterinary Medicine
Other Information
Combined Course Timetable
Important Information