Timetable information in the Course Catalogue may be subject to change.

University Homepage
DRPS Homepage
DRPS Search
DRPS Contact
DRPS : Course Catalogue : School of Informatics : Informatics - Distance Learning

Postgraduate Course: Numerical Algorithms for High Performance Computing (INFD11025)

Course Outline
SchoolSchool of Informatics CollegeCollege of Science and Engineering
Credit level (Normal year taken)SCQF Level 11 (Postgraduate)
Course typeOnline Distance Learning AvailabilityNot available to visiting students
SCQF Credits10 ECTS Credits5
SummaryThe development of High Performance Computing (HPC) systems has been largely driven by the requirements of Computational Scientists running large-scale numerical simulations such as global weather forecasting or studying new materials at the atomic scale. This course covers some of the basic numerical algorithms and computational patterns used in HPC and how they are implemented and used in practice, including the use of standard packages and libraries. Where appropriate, reference will be made to parallel implementations.

All these algorithms operate on real-valued variables, not integers, so it is important to understand the issues around storing and working with floating-point numbers, including the errors that this can introduce. This is an applied course and running the algorithms in practical situations is a key component.
Course description The course will cover:
- Computational science as the third methodology
- Basic numerics, floating-point representation, errors and exceptions
- Simple ordinary differential equations
- N-body / particle methods
- Dense linear algebra, algorithms and libraries
- Partial differential equations and boundary value problems
- Sparse linear algebra
- Initial value problems and implicit methods
- Spectral methods - Fast Fourier Transforms (FFTs) and applications
- Monte Carlo methods
Entry Requirements (not applicable to Visiting Students)
Pre-requisites Co-requisites
Prohibited Combinations Other requirements None
Course Delivery Information
Academic year 2022/23, Not available to visiting students (SS1) Quota:  None
Course Start Semester 2
Timetable Timetable
Learning and Teaching activities (Further Info) Total Hours: 100 ( Online Activities 30, Programme Level Learning and Teaching Hours 2, Directed Learning and Independent Learning Hours 68 )
Assessment (Further Info) Written Exam 60 %, Coursework 40 %, Practical Exam 0 %
Additional Information (Assessment) 60% Written Exam, 40% coursework (2 submissions)
Feedback Provided through regular weekly tutorial sessions and discussions on output of practical exercises as well as on formative assignment.
No Exam Information
Learning Outcomes
On completion of this course, the student will be able to:
  1. Explain why computer simulation is an essential technique in many areas of science, and understand its advantages and limitations.
  2. Describe how real-valued quantities are represented on a computer and understand the various sources and types of error.
  3. Understand how physical problems are represented in a discrete form suitable for computer simulation
  4. Discuss the appropriate choice of algorithm for different problems.
  5. Use standard numerical libraries in their own applications.
Reading List
Additional Information
Graduate Attributes and Skills Solution Exploration, Evaluation and Prioritisation.
Computational Science Techniques.
Special Arrangements This is an Online Learning Course. On-campus students should instead refer to INFR11174 - Numerical Algorithms for High Performance Computing
KeywordsNAHPC,Numerical Algorithms,HPC,EPCC,Algebra,Algorithms,Monte Carlo,Computational Science,Online
Course organiserDr Christopher Johnson
Tel: (0131) 650 5846
Course secretaryMr James Richards
Tel: 90131 6)51 3578
Help & Information
Search DPTs and Courses
Degree Programmes
Browse DPTs
Humanities and Social Science
Science and Engineering
Medicine and Veterinary Medicine
Other Information
Combined Course Timetable
Important Information