THE UNIVERSITY of EDINBURGH

DEGREE REGULATIONS & PROGRAMMES OF STUDY 2022/2023

Timetable information in the Course Catalogue may be subject to change.

University Homepage
DRPS Homepage
DRPS Search
DRPS Contact
DRPS : Course Catalogue : School of Informatics : Informatics

Postgraduate Course: Parallel Programming Languages and Systems (Level 11) (INFR11023)

Course Outline
SchoolSchool of Informatics CollegeCollege of Science and Engineering
Credit level (Normal year taken)SCQF Level 11 (Year 4 Undergraduate) AvailabilityAvailable to all students
SCQF Credits10 ECTS Credits5
SummaryThe module familiarises students with the issues involved in designing, implementing and applying parallel programming systems. Initial motivation will be provided by consideration of a number of typical high performance applications and parallel architectures. This will highlight the role of parallel software systems as a means of bridging the gap between these and allow abstraction of the issues which must be addressed by any such system (partitioning, communication, agglomeration, scheduling). It will explore the ways in which these challenges have been addressed by a range of systems, including both de facto standards and more adventurous research projects.
Course description * Introduction. Conceptual and architectural models of parallelism. Parallel algorithmic paradigms and simple parallel algorithms.Iterative, recursive pipeline and bag-of-task parallelism.
* Generic issues in shared variable programming. Mutual exclusion, condition synchronization. Locks, barriers semaphores and monitors, use and implementation.
* Realisation in Pthreads and Java.
* Issues in message passing programming. Channels and synchronization models.
* Realisation in MPI: communicators, simple and collective operations
* Selected case studies highlighting alternative approaches, for example,
o Associative models. Linda, tuple space and related primitives.
o Threading Building Blocks.

Relevant QAA Computing Curriculum Sections: Concurrency and Parallelism
Entry Requirements (not applicable to Visiting Students)
Pre-requisites Co-requisites
Prohibited Combinations Students MUST NOT also be taking Parallel Programming Languages and Systems (Level 11) (UG) (INFR11226)
Other requirements MSc students must register for this course, while Undergraduate students must register for INFR11226 instead.

This course is open to all Informatics students including those on joint degrees. For external students where this course is not listed in your DPT, please seek special permission from the course organiser (lecturer).

Students must also be competent programmers in C, C++ or Java and have an appreciation of the connection between log_2 and 2^.
Information for Visiting Students
Pre-requisitesAs above.
High Demand Course? Yes
Course Delivery Information
Academic year 2022/23, Available to all students (SV1) Quota:  None
Course Start Semester 2
Timetable Timetable
Learning and Teaching activities (Further Info) Total Hours: 100 ( Lecture Hours 20, Summative Assessment Hours 2, Programme Level Learning and Teaching Hours 2, Directed Learning and Independent Learning Hours 76 )
Assessment (Further Info) Written Exam 80 %, Coursework 20 %, Practical Exam 0 %
Additional Information (Assessment) Exam 80%
Coursework 20%

Assessment will be by a combination of short programming exercises, designed to familiarize students with the practicalities of parallel programming; and, pencil-and-paper exercises.

You should expect to spend approximately 20 hours on the coursework for this course.
Feedback Not entered
Exam Information
Exam Diet Paper Name Hours & Minutes
Main Exam Diet S2 (April/May)Parallel Programming Languages and Systems (Level 11) (INFR11023)2:00
Learning Outcomes
On completion of this course, the student will be able to:
  1. describe generic issues (as discussed in the syllabus) which must be addressed by any parallel programming system.
  2. explain, given a description of a previously unseen parallel application, where specific instances of the generic issues will arise.
  3. explain, in considerable detail, the ways in which the generic issues are addressed by the MPI and Pthreads programming models and their supporting infrastructure.
  4. apply their practical experience with MPI and Pthreads to write clean, adaptable and scalable parallel programs for simple applications.
  5. compare the approaches proposed by a range of more speculative programming models.
Reading List
G.R. Andrews, Foundations of Multithreaded, Parallel and Distributed Programming, 2000
B. Wilkinson, M.Allen, 'Parallel Programming, Techniques and Applications', 1999
I Foster, 'Designing and Building Parallel Programs', 1995
M.J.Quinn, 'Parallel Programming in C with MPI and OpenMP', 2004
Selected research papers
Additional Information
Graduate Attributes and Skills Not entered
Keywordsparallel programming,architectures,concurrency,parallelism
Contacts
Course organiserDr Murray Cole
Tel: (0131 6)50 5154
Email: M.Cole@ed.ac.uk
Course secretaryMrs Helen Tweedale
Tel: (0131 6)50 3827
Email: Helen.Tweedale@ed.ac.uk
Navigation
Help & Information
Home
Introduction
Glossary
Search DPTs and Courses
Regulations
Regulations
Degree Programmes
Introduction
Browse DPTs
Courses
Introduction
Humanities and Social Science
Science and Engineering
Medicine and Veterinary Medicine
Other Information
Combined Course Timetable
Prospectuses
Important Information