Timetable information in the Course Catalogue may be subject to change.

University Homepage
DRPS Homepage
DRPS Search
DRPS Contact
DRPS : Course Catalogue : School of Informatics : Informatics

Undergraduate Course: Natural Language Understanding, Generation, and Machine Translation (INFR11157)

Course Outline
SchoolSchool of Informatics CollegeCollege of Science and Engineering
Credit level (Normal year taken)SCQF Level 11 (Year 4 Undergraduate) AvailabilityAvailable to all students
SCQF Credits20 ECTS Credits10
SummaryThis course explores current research on processing natural language: interpreting, generating, and translating. The course will focus mainly on deep learning approaches to various NLP tasks and applications. It will provide an introduction to the main neural network architectures used in NLP and how they are used for tasks such as syntactic and semantic parsing, as well as end-user applications such as machine translation and text summarisation.

Building on linguistic and algorithmic knowledge taught in prerequisite courses, this course also aims to further develop students' understanding of the strengths and weaknesses of current approaches with respect to linguistic and computational considerations. Practical assignments will provide the opportunity to implement and analyse some of the approaches considered.
Course description The course aims to familiarise students with recent research across a range of topics within NLP, mainly within the framework of neural network models, and with a focus on applications such as machine translation, summarisation, and semantic parsing.
Entry Requirements (not applicable to Visiting Students)
Pre-requisites Students MUST have passed: Accelerated Natural Language Processing (INFR11125) OR Foundations of Natural Language Processing (INFR10078)
Co-requisites Students MUST also take: Machine Learning and Pattern Recognition (INFR11130) OR Machine Learning Practical (INFR11132) OR Applied Machine Learning (INFR11211) OR Machine Learning (INFR10086)
Prohibited Combinations Students MUST NOT also be taking Natural Language Understanding, Generation, and Machine Translation (UG) (INFR11225)
Other requirements MSc students must register for this course, while Undergraduate students must register for INFR11225 instead.

As an MSc-level course that assumes previous experience with NLP, it will discuss a range of different issues, including linguistic / representational capacity, computational efficiency, optimisation, etc.

This course is open to all Informatics students including those on joint degrees. For external students where this course is not listed in your Degree Programme Table (DPT), please seek special permission from the course organiser.
Information for Visiting Students
Pre-requisitesAs above.
High Demand Course? Yes
Course Delivery Information
Academic year 2023/24, Available to all students (SV1) Quota:  None
Course Start Semester 2
Timetable Timetable
Learning and Teaching activities (Further Info) Total Hours: 200 ( Lecture Hours 30, Seminar/Tutorial Hours 6, Supervised Practical/Workshop/Studio Hours 6, Feedback/Feedforward Hours 2, Summative Assessment Hours 2, Programme Level Learning and Teaching Hours 4, Directed Learning and Independent Learning Hours 150 )
Assessment (Further Info) Written Exam 60 %, Coursework 40 %, Practical Exam 0 %
Additional Information (Assessment) 60% Exam
40% Coursework

The coursework component of the assessment will consist of two longer assignments in which parts of an NLP system will be implemented and the results
Feedback Tutorials will be devoted to discussing questions, including some exam-like questions, and providing feedback on student answers. Students will also get feedback on their work through labs, through formative comments on coursework submissions, and through online discussion.
Exam Information
Exam Diet Paper Name Hours & Minutes
Main Exam Diet S2 (April/May)Natural Language Understanding, Generation, and Machine Translation (INFR11157)2:00
Learning Outcomes
On completion of this course, the student will be able to:
  1. identify and discuss the main linguistic, machine learning, and ethical challenges involved in the development and use of natural language processing systems
  2. understand and describe state-of-the-art models and algorithms used to address challenges in natural language processing systems
  3. design, implement, and apply modifications to state-of-the-art natural language processing systems
  4. understand the computational and engineering challenges that arise in the use of different models for natural language processing, and discuss the pros and cons of different models for a given task
  5. understand, design and justify approaches to evaluation and error analysis in natural language processing systems
Reading List
There is no textbook for the course; readings will come from recent research literature.
Additional Information
Graduate Attributes and Skills Students will develop their skills in reading research papers and identifying pros and cons of different approaches. They will also learn to analyse and discuss results from their own implementations.
KeywordsNatural Language Processing,NLU+,Machine Translation
Course organiserDr Alexandra Birch-Mayne
Tel: (0131 6)50 8286
Course secretaryMiss Yesica Marco Azorin
Tel: (0131 6)505113
Help & Information
Search DPTs and Courses
Degree Programmes
Browse DPTs
Humanities and Social Science
Science and Engineering
Medicine and Veterinary Medicine
Other Information
Combined Course Timetable
Important Information