# DEGREE REGULATIONS & PROGRAMMES OF STUDY 2023/2024

### Timetable information in the Course Catalogue may be subject to change.

 University Homepage DRPS Homepage DRPS Search DRPS Contact
DRPS : Course Catalogue : School of Mathematics : Mathematics

# Undergraduate Course: Category Theory (MATH11237)

 School School of Mathematics College College of Science and Engineering Credit level (Normal year taken) SCQF Level 11 (Year 5 Undergraduate) Availability Available to all students SCQF Credits 10 ECTS Credits 5 Summary A first course in category theory, covering the basic concepts of the subject and their relevance to other parts of mathematics First course in category theory covering the following topics: - Categories, functors and natural transformations - Universal properties - Adjunctions, limits and representability - Uses of categorical concepts in other parts of mathematics Course description Category theory begins with the observation that the collection of all mathematical structures of a given type, together with all the maps between them, is itself a nontrivial structure which can be studied in its own right. Since the birth of category theory in the 1940s, this mild observation has had great success in unifying and systematizing broad swathes of mathematics. It has now become an indispensable tool in algebra, topology and geometry, and its applications even reach into parts of computer science, physics and other branches of science. Category theory provides a bird's eye view of mathematics, revealing patterns that are invisible from ground level. But it is not all about big concepts: as for any other subject, learning category theory involves acquiring some technical skills. Central to this course is the notion of universal property, made precise through the related concepts of adjoint functors, limits and representability. Students taking this course will learn both the relevance of category theory to other parts of mathematics and a rigorous body of definitions, theorems and proofs. Syllabus: 1. Categories, functors and natural transformations 2. Adjoints 3. Representables 4. Limits 5. Adjoints, representables and limits 6. (Optional) Further topics in category theory (e.g. abelian categories, toposes, monads, enriched categories, monoidal categories)
 Pre-requisites Students MUST have passed: Honours Algebra (MATH10069) Co-requisites Prohibited Combinations Other requirements The course will feature many examples drawn from algebra and topology. Although it is not essential to understand all of these examples, students who have taken some Level 10/11 courses in algebra (e.g. MATH10079 Group Theory) or topology (e.g. MATH10076 General Topology) will be at an advantage.
 Pre-requisites Visiting students are advised to check that they have studied the material covered in the syllabus of each prerequisite course before enrolling. High Demand Course? Yes
 Academic year 2023/24, Available to all students (SV1) Quota:  None Course Start Semester 1 Timetable Timetable Learning and Teaching activities (Further Info) Total Hours: 100 ( Lecture Hours 22, Seminar/Tutorial Hours 5, Summative Assessment Hours 2, Programme Level Learning and Teaching Hours 2, Directed Learning and Independent Learning Hours 69 ) Assessment (Further Info) Written Exam 80 %, Coursework 20 %, Practical Exam 0 % Additional Information (Assessment) Coursework 20%, Examination 80% Feedback Not entered Exam Information Exam Diet Paper Name Hours & Minutes Main Exam Diet S1 (December) Category Theory (MATH11237) 2:00
 On completion of this course, the student will be able to: Work with the core concepts of category theory and give examples of how they appear in other parts of mathematics.Understand and explain the relationship between adjointness, limits and representability.Work with theorems in category theory, explain key steps in proofs, and summarize proofs.Solve unseen problems in category theory, giving arguments at an appropriate level of detail.
 Tom Leinster, Basic Category Theory. Cambridge University Press, 2014. Emily Riehl, Category Theory in Context. Dover, 2016.
 Graduate Attributes and Skills Not entered Keywords CatTH,Category Theory,Foundations
 Course organiser Dr Thomas Leinster Tel: (0131 6)50 5057 Email: Tom.Leinster@ed.ac.uk Course secretary Mr Martin Delaney Tel: (0131 6)50 6427 Email: Martin.Delaney@ed.ac.uk
 Navigation Help & Information Home Introduction Glossary Search DPTs and Courses Regulations Regulations Degree Programmes Introduction Browse DPTs Courses Introduction Humanities and Social Science Science and Engineering Medicine and Veterinary Medicine Other Information Combined Course Timetable Prospectuses Important Information