Timetable information in the Course Catalogue may be subject to change.

University Homepage
DRPS Homepage
DRPS Search
DRPS Contact
DRPS : Course Catalogue : School of Social and Political Science : Postgrad (School of Social and Political Studies)

Postgraduate Course: Dissertation (DSTI - SSPS) (PGSP11499)

Course Outline
SchoolSchool of Social and Political Science CollegeCollege of Arts, Humanities and Social Sciences
Credit level (Normal year taken)SCQF Level 11 (Postgraduate)
Course typeDissertation AvailabilityNot available to visiting students
SCQF Credits60 ECTS Credits30
SummaryThis is a major piece of independent work which forms the final stage of the MSc programme. It is intended to allow students to demonstrate their ability to organise and carry out a substantial investigation into a problem in data science, according to sound scientific principles. The project involves both the application of skills learnt in the past and the acquisition of new skills. The final submission will be expected to be at a level appropriate for an independent researcher and be a good indication of a student's potential to go on to be a productive researcher in a relevant sub-discipline of Data Science (i.e. Social Data Science). This course is only available to students on the Data Science, technology and Innovation Online Learning MSc.
Course description The project will be supervised by a member of academic staff from SSPS and possibly a co-supervisor appropriate to the context of the research (who may be within another part of the University or may be from an appropriate external organisation).

In this dissertation course you will be working independently on an extended piece of writing which is original and presents new research within it in the form of a sustained argument. The dissertation marks the final stage of your Masters degree and demonstrates that over the course of the programme you have gained the skills and knowledge required to engage in the formal and rigorous process of research. This process entails, but is not restricted to, identifying a suitable research topic, formulating research objectives, organising/analysing data, organising and reviewing relevant literature, devising an appropriate research methodology, reporting results, drawing conclusions and possibly even making relevant recommendations to the wider research community.

The design and conduct of the project will require a high level of commitment and application from the student. The dissertation demonstrates their ability to think scientifically and complete a research report that follows expected academic conventions of style, tone, structuring and referencing. Supervisory support will be supplemented by the detailed project handbook given to all students.

The types of activity involved in each project will vary but will include most of the following:
- a survey of the work that has previously been published in your subject, identifying gaps in the literature;
- describing the broad philosophical underpinning to your chosen research methods, including whether you are using qualitative or quantitative methods, or a mixture of both, and why;
- presenting your own original findings in relation to the phenomenon you have been gathering data about and the wider context in which it is located, in a form that is clear, relevant and simple;
- examining your results in relation to your research questions and in relation to existing research, enabling you to assess the contribution of your research.

Communication with supervisors, including discussion progress and review of draft materials, will be determined by the student and supervisor and is most likely to be carried out by a combination of email and telephone/skype.
Entry Requirements (not applicable to Visiting Students)
Pre-requisites Students MUST have passed: Social Shaping of Digital Research (PGSP11389)
Prohibited Combinations Other requirements None
Course Delivery Information
Academic year 2023/24, Not available to visiting students (SS1) Quota:  10
Course Start Block 5 (Sem 2) and beyond
Course Start Date 29/04/2024
Timetable Timetable
Learning and Teaching activities (Further Info) Total Hours: 600 ( Dissertation/Project Supervision Hours 12, Programme Level Learning and Teaching Hours 12, Directed Learning and Independent Learning Hours 576 )
Assessment (Further Info) Written Exam 0 %, Coursework 100 %, Practical Exam 0 %
Additional Information (Assessment) Coursework 100% (15.000 words dissertation)
Feedback Not entered
No Exam Information
Learning Outcomes
On completion of this course, the student will be able to:
  1. Structure and summarise a body of knowledge relating to a substantial project topic in social data science.
  2. Critically evaluate previous work in the area.
  3. Conduct a programme of work in further investigation of issues related to the topic.
  4. Discuss and solve conceptual problems which arise during the investigation; justify research design decisions made during the investigation.
  5. Critically evaluate the investigation; present their work in compliance with academic standards.
Reading List
Additional Information
Graduate Attributes and Skills Apply critical analysis, evaluation and synthesis to issues that are informed by forefront developments in the subject/discipline;
Critically review, consolidate and extend knowledge, skills, practices and thinking in a subject/discipline.
KeywordsNot entered
Course organiserMr Ben Collier
Course secretaryMs Maria Brichs
Tel: (0131 6)51 3205
Help & Information
Search DPTs and Courses
Degree Programmes
Browse DPTs
Humanities and Social Science
Science and Engineering
Medicine and Veterinary Medicine
Other Information
Combined Course Timetable
Important Information