Undergraduate Course: Separation Processes 5 (CHEE11023)
Course Outline
School | School of Engineering |
College | College of Science and Engineering |
Credit level (Normal year taken) | SCQF Level 11 (Year 5 Undergraduate) |
Availability | Available to all students |
SCQF Credits | 10 |
ECTS Credits | 5 |
Summary | Part I:
The first half of the course, on distillation, comprises a discussion of composition and temperature profiles in ideal distillation columns, followed by examples and purposes of non-standard configurations and energy integration schemes for distillation. The modelling basis for tray-by-tray simulation of distillation columns is followed by a review of how azeotrope - forming mixtures can be separated. Topics include the causes of non-ideality, extractive and azeotropic distillation and composition trajectories.
Part II:
The second half of this course covers adsorption and crystallization processes. The section on adsorption processes is aimed to understand how to design and operate a cyclic adsorption process and estimate its performance. To this end, we apply a mathematical method called Equilibrium Theory to various adsorption systems and learn a graphical method to construct a cyclic adsorption process cycle. The crystallisation process section comprises solid/liquid phase equilibrium, mass and energy balances and the analysis of a crystalliser (MSMPR). |
Course description |
Lecture 1: Composition profiles in ideal distillation.
Lecture 2: Non-standard columns.
Lecture 3: Energy integration in ideal columns.
Lecture 4: Causes of non-ideality.
Lecture 5: Extractive distillation.
Lecture 6: Azeotropic distillation : ethanol z water z benzene example.
Lecture 7: Choice of mass separating agent.
Lecture 8: Use of pressure to break azeotropes.
Lecture 9: Non-ideal composition profiles.
Lecture 10: Distillation trajectories and distillation boundaries.
Lectures 11-12: Adsorption breakthrough
Lectures 13-14: Equilibrium theory analysis of a PSA
Lecture 15: PSA scheduling
Lecture 16: Adsorption processes
Lecture 17-18: Phase equilibria in crystallization.
Lecture 19-20: Crystallizers
|
Entry Requirements (not applicable to Visiting Students)
Pre-requisites |
|
Co-requisites | |
Prohibited Combinations | |
Other requirements | None |
Information for Visiting Students
Pre-requisites | None |
High Demand Course? |
Yes |
Course Delivery Information
|
Academic year 2024/25, Available to all students (SV1)
|
Quota: None |
Course Start |
Semester 2 |
Timetable |
Timetable |
Learning and Teaching activities (Further Info) |
Total Hours:
100
(
Lecture Hours 20,
Formative Assessment Hours 1,
Summative Assessment Hours 2,
Programme Level Learning and Teaching Hours 2,
Directed Learning and Independent Learning Hours
75 )
|
Assessment (Further Info) |
Written Exam
100 %,
Coursework
0 %,
Practical Exam
0 %
|
Additional Information (Assessment) |
100% Exam. |
Feedback |
Not entered |
Exam Information |
Exam Diet |
Paper Name |
Hours & Minutes |
|
Main Exam Diet S2 (April/May) | Separation Processes 5 | 2:120 | | Resit Exam Diet (August) | | 2:00 | |
Learning Outcomes
On completion of this course, the student will be able to:
- Design stepwise configuration of a multi-column cyclic adsorption process by a short-cut method. - Describe how various adsorption processes work in the context of actual industrial processes containing the adsorption.
- Describe how to configure acid gas removal processes having absorption columns. - Construct the mass and energy balances around a crystalliser and design a crystallizer given the target specification.
- Recognise design faults from column temperature/composition profiles in distillation columns for ideal binary mixtures, Describe tray by tray distillation methods. - Discuss heat integration for distillation, citing and explaining a number of strategies.
- Describe and discuss the causes and consequences of non-ideality in distillation, with particular reference to Hydrogen Bonding. - Explain features of non-ideal distillation profiles and how they differ from ideal.
- Draw flowsheets for and describe details of azeotropic and extractive distillation systems for separating non-ideal systems, including those with azeotropes. - Sketch distillation boundaries for ternary systems, and calculate the consequent limits on separations for azeotropic systems.
|
Reading List
Adsorption part
Principles of Adsorption and Adsorption Processes, 1984.Ruthven D.M. ¿ Wiley.
Pressure Swing Adsorption, 1994 Ruthven D.M., Farooq S., Knaebel K.S. ¿ Wiley.
Perry¿s Chemical Engineers¿ Handbook. 7th Ed., 1997. Perry R.H. and Green D.W., McGraw-Hill.
Crystallization part
Unit Operations of Chemical Engineering, 1993.
MaCabe W.L., Smith J.C., Harriott P.¿ McGraw Hill.
Crystallization, 2001 (available in library as electronic resource)
Mullin J.W. ¿ Oxford.
Industrial Crystallization, 1995, Narayan S. Tavare
Distillation part
Separation Processes
King CJ (McGraw¿Hill, 1984)
Distillation Design in Practice
Rose LM (Elsevier,1985)
Conceptual Design of Chemical Processes
Douglas J (McGraw¿Hill, 1988)
(Recommended to buy for both this course and CHEE10005 Chemical Engineering Design: Synthesis and Economics 4.
Chapter 7 and Appendices A.2 ¿ A.6 have some excellent material on distillation synthesis and short cut methods.
There is also a good discussion of distillation boundaries for non-ideal separations.)
Conceptual design of Distillation Systems
Doherty MF, Malone MF (McGraw¿Hill, 2001)
Systematic Methods of Chemical Process Design
Biegler LT (Pentice Hall, 1997)
|
Additional Information
Graduate Attributes and Skills |
Not entered |
Keywords | Adsorption,Absorption,Crystallization,Distillation,Engineering,Process design,Process analysis |
Contacts
Course organiser | Prof Khellil Sefiane
Tel: (0131 6)50 4873
Email: k.sefiane@ed.ac.uk |
Course secretary | Mr Mark Ewing
Tel:
Email: mewing2@ed.ac.uk |
|
|