Undergraduate Course: Key Methods in Physical Geography (GEGR09018)
Course Outline
School | School of Geosciences |
College | College of Science and Engineering |
Credit level (Normal year taken) | SCQF Level 9 (Year 3 Undergraduate) |
Availability | Not available to visiting students |
SCQF Credits | 20 |
ECTS Credits | 10 |
Summary | This course is designed to provide Physical Geography students with the key computational and GIS techniques needed for geospatial data analysis and visualisation; skills that can be used during dissertation research and beyond. Students will be exposed to common geospatial datasets, how they are derived, where they can be found, and methods for fusing them with other physical and human geography datasets to inform decisions. The students will be trained in data analysis using Python and GIS through a series of taught practicals and two assessed coursework projects. Emphasis will be placed on transferable skills and on identifying the most appropriate technique for a given scientific analysis or inquiry. |
Course description |
The overall aim of the course is to show how geoscientists can use data to guide decision making. The course will provide students competency in visualising and statistically analysing large data sets from a range of subdisciplines across physical geography, and in a range of data formats commonly used in geoscientific data analysis (e.g., geotiff and NetCDF). Methods taught will centre around 2 commonly-used data analysis tools: GIS software, and the Python programming language. Through this lens the students will be taught basic statistical and numerical analysis techniques (e.g. correlation, regression and statistical significance), and sequential and spatial analysis techniques (e.g. interpolation, mosaicking and smoothing). The course will be delivered as a series of practicals, devised to take the students through the core skills and concepts while at the same time engaging them with analysis of real geographical data drawn from freely available sources. Demonstrators will provide support but course staff will play a proactive role via demonstrations and discussion.
Emphasis throughout the course will be in delivering key academic and transferrable skills training which students can tailor to an area of geography of their choice, and which will act as crucial preparation for undertaking independent research in Years 3 to 4 of a Geography degree. Additionally, emphasis will be placed on identifying the most appropriate computational/analysis technique for a given scientific investigation. For instance, regression may be more easily carried out in Python but GIS may be simpler for data pre-processing and preparation.
Outline Syllabus:
Weeks 1-4: Weekly 3-hour labs in GIS and remote sensing (EO)
Weeks 5-10: Weekly 3-hour labs in Python (Assessment 1 in week 6)
Week 11: Python, leveraging GIS, with optional 3 hour python surgery
Detailed Syllabus:
GIS and Remote Sensing:
Week 1: Intro to geospatial analysis and remote sensing: Common forms of geospatial data (raster, vector and shapefile), what does a satellite measure and how to extract information from it.
Week 2: Mapping land surface properties with GIS and remote sensing for decision making.
Week 3: Accuracy assessments. How useful is your map?
Week 4: Upscaling land surface property mapping in time and space and using it to inform society
Python and Data Analysis:
Week 5: Introduction to basic programming concepts. Variables and types of variables. Basic programs and user input.
Week 6: Understanding modules, lists and arrays in Python. Simple plotting and plot formatting; Reading geographical data in Python; basic Batch Processing.
Week 7: More with Python arrays, loading data from text files. Working with shapefiles. Descriptive statistics of large datasets.
Week 8: Sequential Analysis. Different types of interpolation. Trend analysis. Statistics of time series data. User defined functions.
Week 9: Spatial Analysis. Reading and plotting raster data: working with geotiffs. Comparing vector and raster data (ground-truth methods). Raster generation. Slope analysis. Plotting NetCDF data.
Week 10: Bringing GIS and Python together: using Python to analyse snow data.
For a 20 credit 200hr option, the student time will be 30hrs contact, 3 hrs computer surgeries and 167hrs of independent study, completion of work associated with practicals, and completion of assignments.
|
Entry Requirements (not applicable to Visiting Students)
Pre-requisites |
|
Co-requisites | |
Prohibited Combinations | |
Other requirements | No pre-requisites.
This course is compulsory for 3rd year students on the BSc Geography Degree programme. The course is open to other university students, however priority will be given to BSc Geography students. |
Course Delivery Information
|
Academic year 2024/25, Not available to visiting students (SS1)
|
Quota: None |
Course Start |
Semester 1 |
Timetable |
Timetable |
Learning and Teaching activities (Further Info) |
Total Hours:
200
(
Programme Level Learning and Teaching Hours 4,
Directed Learning and Independent Learning Hours
196 )
|
Assessment (Further Info) |
Written Exam
0 %,
Coursework
100 %,
Practical Exam
0 %
|
Additional Information (Assessment) |
GIS Assessment (50%) - Report generated making use of remote sensing data to investigate an environmental phenomenon of societal importance.
Python Assessment (50%) - Students will be asked to carry out modelling and interpretation with multisource environmental data using python programming, but also will be required to engage with GIS methods where appropriate (e.g. visualisation and pre-processing).
Students must attain an overall mark of 40% (or above) in order to pass the course. |
Feedback |
Formative feedback will be provided in the course via practicals in Weeks 1-10. This will be provided by a combination of academic staff and postgraduate demonstrators.
To give practice before the GIS assessment, there is an optional formative assessment due at the end of week 4. This will be a write up of the week 2 practical and will touch on the skills required for the GIS assessment.
Summative feedback will be provided via written comments from the coursework assessments. |
No Exam Information |
Learning Outcomes
On completion of this course, the student will be able to:
- Gain an understanding of basic concepts of computer programming and GIS analysis.
- Become familiar with some common spatial datasets, including remote sensing, climate and social datasets.
- Develop an understanding of a range of data processing/analysis techniques and the ability to determine suitable data analysis approaches to test hypotheses.
- Gain appreciation of basic descriptive and inferential statistics and their use in interpreting data.
- Attain solid grounding to enable self-learning of additional data analysis techniques beyond those taught in the course.
|
Reading List
Remote sensing and image interpretation / Thomas M. Lillesand, Ralph W. Kiefer, Jonathan W. Chipman. Lillesand, Thomas M. ; Kiefer, Ralph W. ; Chipman, Jonathan W. Hoboken, NJ : Wiley & Sons ; 2015
Python Beginners Guide: https://wiki.python.org/moin/BeginnersGuide
Python Quick Start (Beginner) and Python Data Analysis (Advanced) on LinkedinLearning (access through myed)
|
Additional Information
Graduate Attributes and Skills |
Students will be familiar with the capabilities of GIS and Python and be able to use them to analyse geospatial data. They will understand the fundamentals of remote sensing data, its abilities and limitations and how to use it to measure and model socially relevant processes. |
Special Arrangements |
This course is compulsory for 3rd year students on the Geography (BSc Hons) This course is open to all university students, but priority will be given to students on the Geography Degree Programmes. Students from other programmes may be able to join if there is space. Please contact geoset.ug.drummond@ed.ac.uk to check availability. |
Keywords | GIS,Quantitative Techniques,Remote Sensing,Programming,Statistical Analysis |
Contacts
Course organiser | Dr Steven Hancock
Tel: (01316)51 7112
Email: steven.hancock@ed.ac.uk |
Course secretary | Miss Leigh Corstorphine
Tel: (0131 6)50 9847
Email: lcorstor@ed.ac.uk |
|
|