Undergraduate Course: Honours Analysis (MATH10068)
Course Outline
School  School of Mathematics 
College  College of Science and Engineering 
Credit level (Normal year taken)  SCQF Level 10 (Year 3 Undergraduate) 
Availability  Available to all students 
SCQF Credits  20 
ECTS Credits  10 
Summary  This is a second course in real analysis and builds on ideas in the analysis portion of Fundamentals of Pure Mathematics. The course begins with sequences and series of real numbers, introducing the concept of Cauchy sequences and results for bounded sequences. Subsequently, sequences and series of functions are introduced and concepts of uniform convergence and power series are discussed. The concept of Lebesgue integral on real line is then developed.
Mathematicians find their own examples to illustrate their own and other people's ideas, and they find new ways of developing the theory and new connections. We will explore and practise these activities in the context of material drawn from some of the lectures in the course and related subjects. We will practise explaining mathematics and also consider 'metacognitive skills': the ability that an experienced mathematician has to step back from a calculation or problem, to 'zoom out' and consider whether it is developing well or whether perhaps there is a flaw in the approach. A typical example is the habit of stopping and asking whether a proof one is working on is actually using all the assumptions of the theorem. 
Course description 
The course has a main section and a skills section. The main section consists of online videos, at least one weekly lecture and a weekly workshop designed to augment and extend understanding the material covered in the lectures in a smaller group setting. There will be frequent reading assignments and exercise assignments which students will be expected to have completed before the lecture.
The syllabus for the main part of the course is:
Review of material from Fundamentals of Pure Mathematics.
Sequences and series of real numbers: Cauchy sequences, Cauchy's criterion for series, absolute convergence implies convergence.
Uniform convergence of sequences and series of functions, power series.
The Lebesgue integral: construction of the Lebesgue integral on the real line, the class of Lebesgue integrable functions and their integrals. Basic properties. Integration of continuous functions and the fundamental
theorem of calculus. Integration and convergence. Lp spaces, Holder and Minkowski inequalities.
Skills: The content will be chosen appropriate to the learning outcomes. (10h)

Information for Visiting Students
Prerequisites  Visiting students are advised to check that they have studied the material covered in the syllabus of each prerequisite course before enrolling. 
High Demand Course? 
Yes 
Course Delivery Information

Academic year 2024/25, Available to all students (SV1)

Quota: None 
Course Start 
Semester 1 
Timetable 
Timetable 
Learning and Teaching activities (Further Info) 
Total Hours:
200
(
Lecture Hours 33,
Seminar/Tutorial Hours 10,
Supervised Practical/Workshop/Studio Hours 10,
Summative Assessment Hours 3,
Programme Level Learning and Teaching Hours 4,
Directed Learning and Independent Learning Hours
140 )

Assessment (Further Info) 
Written Exam
80 %,
Coursework
20 %,
Practical Exam
0 %

Additional Information (Assessment) 
Coursework 20%, Examination 80%

Feedback 
Not entered 
Exam Information 
Exam Diet 
Paper Name 
Hours & Minutes 

Main Exam Diet S2 (April/May)  Honours Analysis (MATH10068)  3:00  

Academic year 2024/25, Partyear visiting students only (VV1)

Quota: None 
Course Start 
Semester 1 
Timetable 
Timetable 
Learning and Teaching activities (Further Info) 
Total Hours:
200
(
Lecture Hours 33,
Seminar/Tutorial Hours 10,
Supervised Practical/Workshop/Studio Hours 10,
Summative Assessment Hours 3,
Programme Level Learning and Teaching Hours 4,
Directed Learning and Independent Learning Hours
140 )

Assessment (Further Info) 
Written Exam
80 %,
Coursework
20 %,
Practical Exam
0 %

Additional Information (Assessment) 
Coursework 20%, Examination 80%

Feedback 
Not entered 
Exam Information 
Exam Diet 
Paper Name 
Hours & Minutes 

Main Exam Diet S1 (December)  Honours Analysis (MATH10068) Semester 1 Visiting students only  3:180  
Learning Outcomes
On completion of this course, the student will be able to:
 State definitions and principal results of the course accurately, to present and explain standard proofs, and to use these together with the principal concepts, arguments and methods presented in the course in standard situations, and also to tackle problems analogous to or extending seen examples.
 Find, explain and discuss examples that illustrate the theory in the course or which do or do not satisfy a definition or the conditions or conclusions of a theorem.
 Use the theory and methods of the course to address and solve unseen problems in both concrete and abstract situations.
 Combine purposeful private study with help from fellow students, tutors and lecturers and to use lecture notes and alternative sources to build a sound basis of understanding of the areas of mathematical analysis presented in the course.
 Demonstrate the ability to communicate mathematics orally, as well as the ability to read and write mathematics using advanced notation accurately and appropriately.

Reading List
Wade, W R, 'An Introduction to Analysis', 4th Edition, ISBN 9780136153702

Additional Information
Graduate Attributes and Skills 
Not entered 
Keywords  HAna 
Contacts
Course organiser  Mr Leonardo Tolomeo
Tel:
Email: l.tolomeo@ed.ac.uk 
Course secretary  Miss Greta Mazelyte
Tel:
Email: greta.mazelyte@ed.ac.uk 

