THE UNIVERSITY of EDINBURGH

DEGREE REGULATIONS & PROGRAMMES OF STUDY 2025/2026

Timetable information in the Course Catalogue may be subject to change.

University Homepage
DRPS Homepage
DRPS Search
DRPS Contact
DRPS : Course Catalogue : School of Physics and Astronomy : Undergraduate (School of Physics and Astronomy)

Undergraduate Course: Nuclear and Particle Physics (PHYS10106)

Course Outline
SchoolSchool of Physics and Astronomy CollegeCollege of Science and Engineering
Credit level (Normal year taken)SCQF Level 10 (Year 4 Undergraduate) AvailabilityAvailable to all students
SCQF Credits10 ECTS Credits5
SummaryThis course looks at physics within the nucleus, exploring the consequences of quantum physics at the high energies, and short distances, explored by nuclear and particle physics.

We will begin with a review of relativistic and quantum mechanics, the symmetries of fermions and bosons, and the forces of nature. We will go on to explore the nature of these forces in the nuclear and particle physics domain, and see how they are related to decays and scattering processes.

We will introduce the fundamental particles and composite states, including nuclei, which appear on subatomic scales and investigate the quantum numbers and symmetries associated with the interactions of these particles. We will discuss the models used to describe the phenomena observed on the subatomic scale, and explore both their many successes and their shortcomings.

We will also discuss the experimental methods used to explore the subatomic world.
Course description Nuclear Physics

- The Strong Nuclear Force: the first nuclei, time energy uncertainty, Yukawa exchange model of the nucleon- nucleon interaction, evidence of structure of the nucleon, simplified quark model of proton and neutron, the deuteron
- Nuclear Properties and Models: nuclear sizes, nuclear masses, line of stability, nuclear shell model, excited states in nuclei
- Beta decay and the weak interaction: beta decay, thermonuclear fusion in the sun, solar neutrino oscillations
- Alpha decay and fission: alpha decay, spontaneous fission, induced fission

Particle Physics:
- Fundamental particles & forces. The Standard Model. Conservation laws.
- Particle decays & lifetimes. Scattering processes. Cross-sections.
- Particle acceleration & colliders.
- Interactions of particles in matter. Detectors.
- Introduction to Feynman diagrams. Electromagnetic processes. Coupling constant alpha (fine structure constant).
- Weak interactions. Charged & neutral currents. Pion, muon, tau decays. The CKM matrix.
- Strong interactions. Gluons. Colour. Strong coupling alpha_S. Introduction to confinement.
- The parton model. e+e - ยป hadrons.
- Electron-proton scattering. DIS. Quark model of hadrons. Isospin.
- Neutrino mass and oscillations. CP violation. Recent experimental results.
- Properties of W & Z bosons. Electroweak unification.
- Introduction to Higgs mechanism. Searches for and discovery of the Higgs boson.
Entry Requirements (not applicable to Visiting Students)
Pre-requisites Students MUST have passed: Modern Physics (PHYS08045) AND ( Dynamics and Vector Calculus (PHYS08043) OR Introductory Dynamics (PHYS08052)) AND ( Quantum Mechanics (PHYS09053) OR Principles of Quantum Mechanics (PHYS10094))
Co-requisites
Prohibited Combinations Students MUST NOT also be taking Relativity, Nuclear and Particle Physics (PHYS10096)
Other requirements None
Information for Visiting Students
Pre-requisitesNone
High Demand Course? Yes
Course Delivery Information
Academic year 2025/26, Available to all students (SV1) Quota:  None
Course Start Semester 1
Timetable Timetable
Learning and Teaching activities (Further Info) Total Hours: 100 ( Lecture Hours 24, Supervised Practical/Workshop/Studio Hours 14, Summative Assessment Hours 2, Programme Level Learning and Teaching Hours 2, Directed Learning and Independent Learning Hours 58 )
Assessment (Further Info) Written Exam 100 %, Coursework 0 %, Practical Exam 0 %
Additional Information (Assessment) Degree examination, 100%
Feedback Not entered
Exam Information
Exam Diet Paper Name Minutes
Main Exam Diet S1 (December)Nuclear and Particle Physics Dec Exam120
Learning Outcomes
On completion of this course, the student will be able to:
  1. Apply knowledge of core concepts in physics to more advanced topics in nuclear and particle physics.
  2. Formulate solutions to problems in nuclear and particle physics involving new concepts with limited guidance.
  3. Demonstrate knowledge of the frontiers of the discipline, for example, through cases where current theories fail to explain a set of experimental data.
  4. Locate and make use of detailed information on current topics in physics in the primary research literature.
  5. Summarise current thinking in nuclear and particle physics in a variety of written and oral forms, both alone and in collaboration with others.
Reading List
This course does not follow any particular textbook, such a book does not exist. However, most of the material in this will be covered in the following two books
- An Introduction to Nuclear Physics by Cottingham and Greenwood
- Particle Physics, by B.R. Martin & G. Shaw, 3rd edition (Wiley 2008)
Additional Information
Graduate Attributes and Skills Not entered
KeywordsNucParPh
Contacts
Course organiserDr Matthew Needham
Tel: (0131 6)51 7037
Email: mneedham@exseed.ed.ac.uk
Course secretaryMs Lucy Davis-Jenkins
Tel:
Email: ldavisj@ed.ac.uk
Navigation
Help & Information
Home
Introduction
Glossary
Search DPTs and Courses
Regulations
Regulations
Degree Programmes
Introduction
Browse DPTs
Courses
Introduction
Humanities and Social Science
Science and Engineering
Medicine and Veterinary Medicine
Other Information
Combined Course Timetable
Prospectuses
Important Information