THE UNIVERSITY of EDINBURGH |
---|
Degree
Programme Specification BEng Honours in Civil Engineering |
BEng Honours in Civil Engineering |
To give you an idea of what to expect from this programme, we publish the latest available information. This information is created when new programmes are established and is only updated periodically as programmes are formally reviewed. It is therefore only accurate on the date of last revision. |
Awarding institution: | The University of Edinburgh |
---|---|
Teaching institution: | The University of Edinburgh |
Programme accredited by: | Joint Board of Moderators (JBM) of the Institution of Civil Engineers, the Institution of Structural Engineers, the Institute of Highway Incorporated Engineers, and the Chartered Institution of Highways and Transportation |
Final award: |
BEng (Hons) |
Programme title: | Civil Engineering |
UCAS code: | H200 |
Relevant QAA subject benchmarking group(s): | Engineering |
Postholder with overall responsibility for QA: | Dr Martin Gillie |
Date of production/revision: |
February 2023 |
Further Information: | View the prospectus entry for this programme |
Programme structure and features |
||||||||||||||||||||||||||||||||||||||||||||||
The programme structure and equivalent SCQF points allocation are summarised below:
Full precise details of the programme structure vary from year
to year; current details are available online at Three threads run through the programme: design, sustainability and health and safety. DesignDesign skills are developed continually during our degree programmes. We gradually build students??? confidence and ability until they can confidently tackle complex and open-ended engineering designs subject to the diverse constraints and drivers present on a real project. Design permeates throughout our programmes. Some courses are explicitly design-focused, whereas other courses concentrate upon developing analysis and theory. In all cases, however, design provides the context for the analysis that is being presented and for tutorial problems. We nurture our students??? design abilities in the early years of our programmes with projects including a road design and the design of a hydropower reservoir and dam. The technical basis of these projects is simplistic; the aim is instead to expose students to the design process and to give them confidence in interpreting a design brief, design team working, converging on a design that is in some way ???optimal???, and assessing solutions based on function, cost and environmental implications. As well as open-ended design problems, the early years of our degree programme provide many of the fundamental design methods that form an engineer???s ???toolkit???. The sizing of structural elements of different materials, for example, is investigated through well defined design problems. We expose students to code-based design, but have taken advantage of the transition from British Standards to Eurocodes to move away from teaching formulaic code methods. Our emphasis is on understanding behaviour, and developing the confidence to pick up and apply any code (be it British Standard, American Concrete Institute, or any other code). In parallel to ???rigorous??? design methods, we foster an intuitive ???feel??? for engineering through back-of-the-envelope type calculations, load paths, historical context (case studies such as Ronan Point and the development of materials), and by asking ???do you think this looks the right size????. Other skills required in the designer???s toolkit that are gradually developed are an ability to apply appropriate computer tools (from spreadsheet solution to specialised software), and the use of concept development through sketches and scribbles, in contrast to the carefully-formatted notes and drawings that dominate computer generated material (such as lecture notes). From third year onwards, students tackle a variety of team-based design projects of increasing complexity and scope. These provide practice and confidence in formulating designs, finding solutions to contradictory demands, and assessing the solutions in terms of the function and sustainability of the design (environment, cost, safety by design, etc.). This practice in turn builds appreciation of the importance of establishing the design concept, the iterative nature of design and review, and develops ???engineering judgement???. The design projects include building structure design, geotechnical design of a submerged tube tunnel, and multidisciplinary design, working with students in other engineering disciplines on a hydropower scheme, passive house or potable water supply. The culmination is a 2-week bridge design that covers the full breadth of the design process in an intensive design office environment. Examples of the students??? experience during these projects are uncertainty and contradiction, management of the design process, ???buildability???, client-designer-checker roles (through role play, as an independent checker), conversations with stakeholders, design for operational safety and maintenance (CDM), and communication through drawings, calculations and reports. Academics with design-office experience lead the projects, with strong support from practising engineers, who provide lectures, help set briefs and discuss students??? designs with them in the design office setting. Sustainability Sustainable development, comprising economic, social and environmental sustainability, is a key feature permeating our degree programmes. At all stages of our degrees, the requirement for engineering projects to be economically efficient, to embrace the needs and meet the concerns of stakeholders and to function in harmony with the natural environment is emphasized. The underlying knowledge and understanding of sustainable development as a concept is given primary coverage from students??? first semester in Year 1 in the course ???Engineering 1???. This is a multidisciplinary course taken by all engineering students in first year and covers a wide range of sustainable development themes including for example resource and energy scarcity, global climate change and various political and social structures of relevance. The role of civil engineering on the four UK key priorities for sustainable development identified as sustainable consumption and production, natural resource protection and environmental enhancement, building sustainable communities and climate change and energy, is covered in the following semester???s ???Civil Engineering 1??? course. Key primary coverage of the knowledge and understanding and intellectual aspects of sustainable development is specifically addressed during the Sustainability module of ???Infrastructure Management and Sustainability 3???. An important part of this is the Sustainability Conference in which students have the opportunity to explore sustainable development in the widest sense in a context of their choice, and then to develop transferable skills in communicating it to an audience of peers and invited guests. Other courses focus on specific sustainability issues, for example ???Water Resources 2??? in Year 2 covers the use and conservation of scarce water resources. A further example of this, albeit in an optional course, is teaching on ???Water Supply and Sanitation in International Development 4???, which adds an international dimension together with aspects of global wealth distribution and social and environmental justice as they affect engineering works. Additionally, the optional course ???Contaminated Land and Groundwater Remediation 5??? focuses on the understanding and use of sustainable remediation technologies, integrating sustainable principles, practices, and metrics into remediation projects. All design teaching, notably the dam design in ???Civil Engineering 1???, the Group Design Projects in the fourth year of the MEng programmes and the Geotechnical and Structural Engineering Design Projects in fourth and fifth years include sustainability aspects, with the group designs being particularly focused in this area (recent projects have included water treatment and supply, hydropower and a design for a passive house) as well as being explicitly interdisciplinary. As well as further opportunities to develop knowledge and intellectual understanding of sustainable development, design project also develop students??? practical skills for example in reporting to stakeholders at various stages. On top of all this, most other courses make a contribution to the teaching of sustainable development. For example, a number of courses over the various years of the degrees deal with sizing of structural members, and the choice of and quantity of material used in this feeds into both economic and environmental sustainability. Most subjects relate basic theory to design at some level, and where they do, the need for designs to be sustainable is discussed. Finally, student thesis projects, whilst they vary widely in subject matter, will almost all include some aspect of sustainable development on which the students are expected to reflect and comment. Health and Safety Risk Management Our degree programmes are structured to produce graduates with a keen awareness of the Health and Safety Risks inherent in the construction industry and with the necessary skills and attitudes to promote Health and Safety amongst all those involved with constructing, operating, disposing of or living in proximity to the projects they design. It is our intention to operate the degree programmes and our research in a safe manner for all concerned ??? staff, students and visitors ??? and thus health, safety and risk must be considerations in the use of the physical facilities and infrastructure of the School as well in the theoretical aspects within the degree courses. We thus try to engender a culture of Health and Safety that permeates all that we do and this is done principally through an understanding of the nature of hazard, harm and risk. Students are initially exposed to Risk Management of Health and Safety in student exercises such as laboratory classes and the Surveying Field Course in the first two years of the programme. Risk Assessments are completed for these exercises with a focus on identifying hazards and understanding how they may lead to harm. The process of risk assessment naturally covers issues such as severity versus probability of risk but students are encouraged to consider risk situations critically and evaluate each situation on its own merits rather than treat hazards and risks generically. Students working on experimental projects, which sometimes involve hazardous activities using chemicals or lasers for example, carry out further more detailed analysis and where necessary training. All student risk assessments are countersigned by staff. Risk management, as a concept and within industrial practice ??? including also commercial, financial, technical and environmental risk ??? is taught explicitly at 3rd year level. Students are immersed in the practical management and understanding of construction risks via 3rd year site visits and through material delivered by visiting construction safety managers. The concept of Safety in Design is instilled at an early stage in the programme with students encouraged to understand the responsibilities of designers and clients in the civil engineering process. This is demonstrated through the use of factors of safety in design as discussed from 1st year onwards, and reliability concepts in for example water resources feature widely, with students being expected to understand the risks associated with various service levels dependent on rainfall or other phenomena that cannot be controlled. In 4th and 5th year design projects hazards are expected to be identified and mitigated through the concept of ALARP. Other more advanced courses, such as Fire Engineering related courses in years 4 and 5 deal with more specific risks. Application of all these principles of Risk Management is expected in all project and design work, and the 4th year design projects in particular are expected to be designed with a view to the safety of constructors, operators and users. The concepts and philosophies provided by the Construction (Design and Management Regulations) are thus inherent in all considerations of project delivery, from design through construction to use. Exit routes exist from the programme as follows:
|
Other items |
|
Further information |