- ARCHIVE for reference only

University Homepage
DRPS Homepage
DRPS Search
DRPS Contact
DRPS : Course Catalogue : School of Engineering : Civil

Undergraduate Course: Behaviour and Design of Structures 2 (CIVE08012)

Course Outline
School School of Engineering College College of Science and Engineering
Course type Standard Availability Available to all students
Credit level (Normal year taken) SCQF Level 8 (Year 2 Undergraduate) Credits 10
Home subject area Civil Other subject area None
Course website None Taught in Gaelic? No
Course description In this course, students develop an understanding of the basic concepts, behaviour, and strength of steel, concrete, prestreseed concrete, composite and other structural sections.
Entry Requirements
Pre-requisites Students MUST have passed: Civil Engineering 1 (CIVE08001)
Co-requisites Students MUST also take: Structural Mechanics 2A (SCEE08002) AND Structural Mechanics 2B (CIVE08010) AND Materials Science and Engineering (Civil) 2 (CIVE08013)
Prohibited Combinations Other requirements None
Additional Costs None.
Information for Visiting Students
Pre-requisites None, but see co-requisite requirements
Displayed in Visiting Students Prospectus? Yes
Course Delivery Information
Delivery period: 2010/11 Semester 2, Available to all students (SV1) WebCT enabled:  Yes Quota:  None
Location Activity Description Weeks Monday Tuesday Wednesday Thursday Friday
King's BuildingsLecture1-11 12:10 - 13:00
King's BuildingsLecture1-11 12:10 - 13:00
King's BuildingsLecture1-11 12:10 - 13:00
King's BuildingsTutorialBDS2 tutorials2-11 10:00 - 12:00
First Class Week 1, Monday, 12:10 - 13:00, Zone: King's Buildings. Lecture Theatre 2, Hudson Beare Building
Exam Information
Exam Diet Paper Name Hours:Minutes Stationery Requirements Comments
Main Exam Diet S2 (April/May)1:3016 sides / graph
Resit Exam Diet (August)1:3016 sides / graph
Summary of Intended Learning Outcomes
By the end of the course, the student should be able to:
& apply general stress-strain curves to analyse the stress distribution on a general section under combined bending and compression/tension
& calculate the ultimate moment and compression capacities of general steel sections;
& calculate the ultimate moment and compression capacities of various reinforced concrete sections;
& calculate the ultimate moment and compression capacities of various composite (e.g. steel-concrete, FRP-concrete etc.) sections;
& develop M-N interaction curves for any sections made of any materials (e.g. steel, concrete, masonry, composite) for a given constitutive model;
& calculate the ultimate capacity of common sections made of common materials under combined bending and compression;
& understand the behaviour of prestressed concrete.
Assessment Information
Coursework 20%
Examination 80%
Special Arrangements
Additional Information
Academic description Not entered
Syllabus The course consists of a total of 18 1 hour lectures, additional guest lectures and 8 1 hour tutorial sessions.


L1 Introduction
Structure and aims of the course; introduction to the limit state design philosophy; different types of structural forms.

L2 Stress-strain relationships
Stress-strain relationships (constitutive model) of idealised materials under uniaxial tension/compression: elastic-brittle, elastic-perfectly plastic, rigid plastic, elastic no tension, plastic no tension.

L3 Steel - 1
Strength of various steel sections under pure tension, compression or bending.

L4 Steel - 2
Moment-axial force interaction diagram for simple steel sections.

L5 Steel -3
Moment-axial force interaction diagram for complex steel sections.

L6 Masonry - 1
Bricks and mortar, behaviour of masonry, stress-strain relationship, compressive strength of masonry units and masonry assemblies.

L7 Masonry - 2
Analysis and design strength of masonry members under eccentric compressive loading

L8 Concrete - introduction
Concrete as a construction material, strength, test methods, review of stress-strain curve, introduction to durability of concrete.

L9 Plain concrete members
Tensile, compressive and bending capacities of plain concrete members, examples.

L10 Reinforced concrete members - 1
Section analysis based on full bond and plane section assumptions, Simplified stress block; over-reinforced, under-reinforced and balanced sections; calculation of the moment of resistance of singly reinforced section with examples.

L11 Reinforced concrete members - 2
Doubly reinforced sections, calculation of the moment of resistance of the section with example; flanged beams; calculation of moment of resistance of flanged beams.

L12 Reinforced concrete members - 3
Compressive resistance, M-N interaction diagrams, examples.

L13 Composite structures - 1
Bending resistance of steel-concrete composite sections.

L14 Composite structures - 2
M-N interaction diagram of steel-concrete composite sections.

L15 Composite structures - 3
Concrete reinforced with new materials (e.g. FRP).

L16 Prestressed concrete - 1
Introduction, concepts, techniques of applying prestressing, loss of prestress.

L17 Prestressed concrete - 2
Stress analysis and strength of prestressed sections.

L18 Revision


T1 Stress-strain relationships for different materials

T2 Tensile, compressive and bending capacities of steel sections, M-N interaction

T3 Steel and masonry columns

T4 Reinforced concrete sections: capacity under pure bending and eccentric compression

T5 Bending capacity of composite sections

Transferable skills Not entered
Reading list - Trahair, N. S., Bradford, M. A. & Nethercot, D. A. (2001). The Behaviour and Design of Steel Structures to BS5950, Spon Press, third edition-British.

- MacGinley, T. J. (1998). Steel Structures. London: E & FN Spon, second edition.

- MacGinley, T. J. & Ang, T. C. (1992). Structural Steelwork: Design to Limit State Theory. Oxford: Butterworth-Heinemann, second edition.

-Nethercot, D. A. (2001). Limit States Design of Structural Steelwork. London: Spon Press, third edition.
- Owens, G. W. & Knowles, P., Eds. (1994). Steel Designers& Manual. The Steel Construction Institute. Oxford: Blackwell Science Ltd.

- Reinforced & Prestressed Concrete, Kong and Evans, Chapman Hall, 1992.

- Mosley, B., Bungey, J. and Hulse, R. (2007). Reinforced Concrete Design to Eurocode 2. Palgrave, 6th edition.

- Seward, D. (2003). Understanding structures, Analysis, Materials, Design. Palgrave, 3rd edition.

-Chanakya, A. (2003). Design of structural elements: concrete, steelwork, masonry and timber design to British Standards and Eurocodes. Spon Press, 2nd edition.
Study Abroad Not entered
Study Pattern Not entered
Keywords Not entered
Course organiser Dr Jian-Fei Chen
Tel: (0131 6)50 6768
Course secretary Mrs Sharon Potter
Tel: (0131 6)51 7079
Help & Information
Search DPTs and Courses
Degree Programmes
Browse DPTs
Humanities and Social Science
Science and Engineering
Medicine and Veterinary Medicine
Other Information
Important Information
copyright 2011 The University of Edinburgh - 31 January 2011 7:27 am