THE UNIVERSITY of EDINBURGH

DEGREE REGULATIONS & PROGRAMMES OF STUDY 2010/2011
- ARCHIVE for reference only
THIS PAGE IS OUT OF DATE

University Homepage
DRPS Homepage
DRPS Search
DRPS Contact
DRPS : Course Catalogue : School of Engineering : Civil

Undergraduate Course: The Finite Element Method 5 (CIVE11029)

Course Outline
School School of Engineering College College of Science and Engineering
Course type Standard Availability Available to all students
Credit level (Normal year taken) SCQF Level 11 (Year 5 Undergraduate) Credits 10
Home subject area Civil Other subject area Mechanical
Course website None Taught in Gaelic? No
Course description The finite element method is an indispensable tool for engineers in all disciplines. This course introduces students to the fundamental theory of the finite element method as a general tool for numerically solving differential equations for a wide range of engineering problems. A range of field problems described by the Laplace, Poisson and Fourier equations is presented first and all steps of the FE formulation is described. Specific applications in heat transfer and flow in porous media are demonstrated with associated tutorials. The application of the method to elasticity problems is then developed from fundamental principles. Specific classes of problem are then discussed based on abstractions and idealisations of 3D solids, such as plane stress and strain, Euler-Bernoulli and Timoshenko beams and Kirchoff and Mindlin-Reissner plates and shells.
Entry Requirements
Pre-requisites Students MUST have passed: Computer Methods in Structural Engineering 3 (CIVE10018) OR Computer Methods for Mechanical Engineering 3 (MECE09024)
It is RECOMMENDED that students have passed Plastic Analysis of Frames and Slabs 4 (CIVE10003)
Co-requisites
Prohibited Combinations Other requirements None
Additional Costs None
Information for Visiting Students
Pre-requisites This course can only be taken by students with prior experience of Advanced Structural Analysis. Visiting students must discuss their experience with the Course Organiser before they will be permitted to enroll on the course
Displayed in Visiting Students Prospectus? Yes
Course Delivery Information
Delivery period: 2010/11 Semester 1, Available to all students (SV1) WebCT enabled:  Yes Quota:  50
Location Activity Description Weeks Monday Tuesday Wednesday Thursday Friday
King's BuildingsLecture1-11 14:00 - 15:50
First Class Week 1, Monday, 14:00 - 15:50, Zone: King's Buildings. Classroom 10, Alrick Building
Exam Information
Exam Diet Paper Name Hours:Minutes Stationery Requirements Comments
Main Exam Diet S1 (December)The Finite Element Method 51:3012 sides / 2 x graph / Open Book / Double DesksDouble Desks
Resit Exam Diet (August)1:3012 sides / 2 x graph / Open Bookc/w P03269, Open Book
Summary of Intended Learning Outcomes
By the end of the course, the student should be able to:
- demonstrate the ability to produce FEM based numerical discretisations of mathematical descriptions (differential equations) of simple problems in continuum mechanics;
- demonstrate the ability to use FEM for solving simple steady and transient field problems using a standard software package;
- demonstrate the ability to use FEM to produce a reliable prediction of displacements and stresses in linear elastic bodies of relevance to engineering practice using a standard software package;
- demonstrate the ability to make a critical assessment of the calculation.
Assessment Information
The assessment will be made on the basis of: Intermittent assessment 30%. Degree examination 70%
Special Arrangements
None
Additional Information
Academic description Not entered
Syllabus Lectures: Titles & Contents
L1 Introduction
Structure of the course. Aims of the course. References with comments. Recap of Direct Stiffness Method for frame type structures (members/elements, joint/nodes, joint or nodal dofs, free and restrained dofs, element stiffness matrix, assembly into structure stiffness matrix, rearranging of structures stiffness matrix into free and restrained parts, solution for free doffs, calculation of reactions at restrained dofs, calculation of member forces). Recap of the virtual work formulation based finite element formulation for framed structures and continua.
L2-9 Mathematical foundations of the finite element method and application to field problems
The finite element concept and its history. Mathematical preliminaries (Equations of calculus describing physical phenomena, exact solutions and approximate solutions). Strong and weak formulations of a problem. The finite element method will be introduced as a tool for discretising continuum equations of physics describing a problem of interest in engineering. A number of common types of differential equations of interest primarily in civil and mechanical engineering will be presented and their applications discussed. The methods of FEM used to achieve discretisation (variational and Galerkin weighted residual approaches) will be introduced and demonstrated using problems described by Laplace and Poisson equations (this includes steady heat conduction, flow in porous media etc.).
L10-12 FEM for continuum elasticity problems and thermo-mechanics
Concepts developed in the previous lectures will be applied to continuum elasticity problems. The discretisation process will be described first for general 3D solids and then specialised to 2D idealisations of plane stress, plane strain and axial symmetry. This will finally be extended to show how thermo-mechanical effects may be accommodated in the formulations.
L13-16 FEM for structural engineering idealisations
The specialist concepts and formulations required for structural engineering applications of FEM will be formally developed. This will begin with simple 1D bars to beams and plates and shells covering Euler-Bernoulli and Timoshenko beams and Kirchoff and Mindlin-Reissner plates and shells. Special issues such as locking and the use of continuum 2D and 3D elements in modelling flexure dominated structural members will be discussed and their solutions presented.
L17-18 Special topics
A number of special topics, such as skew boundary conditions, multiple point constraints and sub-structuring for large problems will be introduced with examples
Computing Tutorial
A deep and slender cantilever beam in a plane will be analysed first using continuum plane stress elements followed by beam elements of the Euler-Bernoulli and Timoshenko type to familiarise students with ABAQUS and to enable them to understand the differences of modelling a beam using continuum elements and the different types of beam elements. Students will be expected to complete this tutorial in 2 computing lab sessions of 2 hours. No submission will be required.
Computer Project
A computer project will be undertaken in one of the School Computing Labs using the commercial FE software ABAQUS. There will be 3 sessions of 2 hours duration. Students are encouraged to use ABAQUS Viewer post processing to present their results in a neat form. The tutorials should give experience and confidence in the use of finite element analyses and encourage good practice in computational analysis.

Analysis of a plate with hole and a hot disk in hole
This tutorial introduces non-rectangular elements in such a way that the orientation of the main stresses is understood in advance. This ensures that the student examines the principal stress as a means of understanding the behaviour. The stress concentration around the hole will require judicious mesh refinement to capture and provide useful experience. Assuming that the hole contains a disc of material at high temperature, the heat conduction into the plate will be analysed. The effect of thermally induced stresses caused by the thermally expanding disc will also be analysed.
Transferable skills Not entered
Reading list Introduction to the Finite Element Method $ Theory, Programming and Applications, Erik G. Thompson, John Wiley and Sons, 2005.
Finite Element Analysis - From Concepts To Applications, D.S. Burnett, Addison-Wesley 1988
Concepts and Applications of Finite Element Analysis, Cook, Malkus, Plesha and Witt, Wiley 2002
The finite element method 4th Edition, Volume I: Basic Formulation and Linear Problems, O.C. Zienkiewicz and R.L. Taylor, McGraw Hill 1989Course Assessment
http://www.see.ed.ac.uk/~asif/Protected/CVFEM
http://homepage.usask.ca/~ijm451/finite/fe_resources/fe_resources.html
http://www.colorado.edu/engineering/CAS/Felippa.d/FelippaHome.d/Home.html
http://en.wikipedia.org/wiki/Finite_element_method
Study Abroad Not entered
Study Pattern Not entered
Keywords Not entered
Contacts
Course organiser Dr Asif Usmani
Tel: (0131 6)50 5789
Email: Asif.Usmani@ed.ac.uk
Course secretary Mrs Laura Smith
Tel: (0131 6)50 5690
Email: laura.smith@ed.ac.uk
Navigation
Help & Information
Home
Introduction
Glossary
Search DPTs and Courses
Regulations
Regulations
Degree Programmes
Introduction
Browse DPTs
Courses
Introduction
Humanities and Social Science
Science and Engineering
Medicine and Veterinary Medicine
Other Information
Timetab
Prospectuses
Important Information
 
copyright 2011 The University of Edinburgh - 31 January 2011 7:28 am