THE UNIVERSITY of EDINBURGH

DEGREE REGULATIONS & PROGRAMMES OF STUDY 2010/2011
- ARCHIVE for reference only
THIS PAGE IS OUT OF DATE

University Homepage
DRPS Homepage
DRPS Search
DRPS Contact
DRPS : Course Catalogue : School of Physics and Astronomy : Undergraduate (School of Physics and Astronomy)

Undergraduate Course: Atomic and Molecular Physics (PHYS10026)

Course Outline
School School of Physics and Astronomy College College of Science and Engineering
Course type Standard Availability Available to all students
Credit level (Normal year taken) SCQF Level 10 (Year 4 Undergraduate) Credits 10
Home subject area Undergraduate (School of Physics and Astronomy) Other subject area None
Course website None Taught in Gaelic? No
Course description The first half of this course deals principally with atomic structure and the interaction between atoms and fields. It covers electronic transitions, atomic spectra, excited states, hydrogenic and multi-electron atoms. The second half of the course deals with the binding of atoms into molecules, molecular degrees of freedom (electronic, vibrational, and rotational), elementary group theory considerations and molecular spectroscopy.
Entry Requirements
Pre-requisites Students MUST have passed: Quantum Mechanics (PHYS09017)
Co-requisites
Prohibited Combinations Other requirements At least 80 credit points accrued in courses of SCQF Level 9 or 10 drawn from Schedule Q.
Additional Costs None
Information for Visiting Students
Pre-requisites None
Displayed in Visiting Students Prospectus? Yes
Course Delivery Information
Delivery period: 2010/11 Semester 2, Available to all students (SV1) WebCT enabled:  Yes Quota:  None
Location Activity Description Weeks Monday Tuesday Wednesday Thursday Friday
King's BuildingsLecture3-8 16:10 - 18:00
King's BuildingsLecture3-8 16:10 - 18:00
First Class Week 3, Tuesday, 16:10 - 18:00, Zone: King's Buildings. JCMB
Exam Information
Exam Diet Paper Name Hours:Minutes Stationery Requirements Comments
Main Exam Diet S2 (April/May)2:0012 sides
Summary of Intended Learning Outcomes
Upon successful completion of this course it is intended that a student will be able to:

1)discuss the relativistic corrections for the energy levels of the hydrogen atom and their effect on optical spectra
2)derive the energy shifts due to these corrections using first order perturbation theory.
3)state and explain the key properties of many electron atoms and the importance of the Pauli exclusion principle
4)explain the observed dependence of atomic spectral lines on externally applied electric and magnetic fields
5)discuss the importance of group theory in molecular physics
6)state the formal properties of groups, characters and irreducible representations
7)state and justify the selection rules for various optical spectroscopies in terms of the symmetries of molecular vibrations
8)demonstrate a grasp of bonding types in molecules
Assessment Information
Degree Examination, 100%
Special Arrangements
None
Additional Information
Academic description Not entered
Syllabus Not entered
Transferable skills Not entered
Reading list Not entered
Study Abroad Not entered
Study Pattern Not entered
Keywords AtMol
Contacts
Course organiser Prof Jason Crain
Tel: (0131 6)50 5265
Email: Jason.Crain@ed.ac.uk
Course secretary Miss Jennifer Wood
Tel: (0131 6)50 7218
Email: J.Wood@ed.ac.uk
Navigation
Help & Information
Home
Introduction
Glossary
Search DPTs and Courses
Regulations
Regulations
Degree Programmes
Introduction
Browse DPTs
Courses
Introduction
Humanities and Social Science
Science and Engineering
Medicine and Veterinary Medicine
Other Information
Timetab
Prospectuses
Important Information
 
copyright 2011 The University of Edinburgh - 31 January 2011 8:14 am