THE UNIVERSITY of EDINBURGH

DEGREE REGULATIONS & PROGRAMMES OF STUDY 2010/2011
- ARCHIVE for reference only
THIS PAGE IS OUT OF DATE

University Homepage
DRPS Homepage
DRPS Search
DRPS Contact
DRPS : Course Catalogue : School of Physics and Astronomy : Undergraduate (School of Physics and Astronomy)

Undergraduate Course: Advanced Statistical Physics (PHYS11007)

Course Outline
School School of Physics and Astronomy College College of Science and Engineering
Course type Standard Availability Available to all students
Credit level (Normal year taken) SCQF Level 11 (Year 5 Undergraduate) Credits 10
Home subject area Undergraduate (School of Physics and Astronomy) Other subject area None
Course website None Taught in Gaelic? No
Course description In this course we will discuss equilibrium phase transition, of the first and second order, by using the Ising and the Gaussian models as examples. We will first review some basic concepts in statistical physics, then study critical phenomena. Phase transitions will be analysed first via mean field theory, then via the renormalisation group (RG), in real space. We will conclude with some discussion of the dynamics of the approach to equilibrium.
Entry Requirements
Pre-requisites Co-requisites It is RECOMMENDED that students also take Statistical Physics (PHYS11024)
Prohibited Combinations Other requirements At least 80 credit points accrued in courses of SCQF Level 9 or 10 drawn from Schedule Q.
Additional Costs None
Information for Visiting Students
Pre-requisites None
Displayed in Visiting Students Prospectus? Yes
Course Delivery Information
Delivery period: 2010/11 Semester 1, Available to all students (SV1) WebCT enabled:  No Quota:  None
Location Activity Description Weeks Monday Tuesday Wednesday Thursday Friday
King's BuildingsLecture1-11 15:00 - 15:50
King's BuildingsLecture1-11 15:00 - 15:50
King's BuildingsSeminar2-11 14:00 - 15:50
First Class Week 1, Monday, 15:00 - 15:50, Zone: King's Buildings. JCMB
Exam Information
Exam Diet Paper Name Hours:Minutes Stationery Requirements Comments
Main Exam Diet S2 (April/May)2:0012 sides
Delivery period: 2010/11 Semester 1, Part-year visiting students only (VV1) WebCT enabled:  No Quota:  None
Location Activity Description Weeks Monday Tuesday Wednesday Thursday Friday
King's BuildingsLecture1-11 15:00 - 15:50
King's BuildingsLecture1-11 15:00 - 15:50
King's BuildingsTutorial1-11 14:00 - 15:50
First Class Week 1, Monday, 15:00 - 15:50, Zone: King's Buildings. JCMB
Exam Information
Exam Diet Paper Name Hours:Minutes Stationery Requirements Comments
Main Exam Diet S1 (December)2:0012 sides
Summary of Intended Learning Outcomes
Upon successful completion of this course it is intended that a student will be able to:
1)Express expectation values in a canonical ensemble.
2)Discuss the phenomenology of first- and second-order phase transitions with particular reference to the Ising model and liquid-gas transition.
3)Understand what a critical exponent is and be able to derive scaling relations
4)Exactly solve the Ising and the Gaussian model in 1 spatial dimension
5)Calculate correlations in the Ising model
6)Understand what mean field theory is, how it can be used to analyse a phase transition
7)Discuss the validity of mean-field theory in terms of upper critical dimension and give an heuristic argument to suggest dc=4
8)Apply the RG transformation in 1 dimension (decimation) to an Ising-like system.
9)State the RG transformation and discuss the nature of its fixed points for a symmetry-breaking phase transformation
10)Study the fixed points of an RG flow and understand their physical meaning
11)Understand what the Langevin and the Fokker-Planck equations are and how they can be related.
12)Be able to compute expectations of random variables with the Langevin equation, and to solve the Langevin and Fokker-Planck equations in simple cases (1 dimension)
Assessment Information
Degree Examination, 100%
Visiting Student Variant Assessment
Degree Examination, 100%
Special Arrangements
None
Additional Information
Academic description Not entered
Syllabus Not entered
Transferable skills Not entered
Reading list Not entered
Study Abroad Not entered
Study Pattern Not entered
Keywords AdStP
Contacts
Course organiser Dr Davide Marenduzzo
Tel:
Email: dmarendu@ph.ed.ac.uk
Course secretary Miss Paula Wilkie
Tel: (0131) 668 8403
Email: paw@roe.ac.uk
Navigation
Help & Information
Home
Introduction
Glossary
Search DPTs and Courses
Regulations
Regulations
Degree Programmes
Introduction
Browse DPTs
Courses
Introduction
Humanities and Social Science
Science and Engineering
Medicine and Veterinary Medicine
Other Information
Timetab
Prospectuses
Important Information
 
copyright 2011 The University of Edinburgh - 31 January 2011 8:14 am