Undergraduate Course: Thermodynamics (PHYS09021)
Course Outline
School | School of Physics and Astronomy |
College | College of Science and Engineering |
Course type | Standard |
Availability | Available to all students |
Credit level (Normal year taken) | SCQF Level 9 (Year 3 Undergraduate) |
Credits | 10 |
Home subject area | Undergraduate (School of Physics and Astronomy) |
Other subject area | None |
Course website |
http://www2.ph.ed.ac.uk/~gja/thermo/ |
Taught in Gaelic? | No |
Course description | **** This course is for Visiting Students who are here for semester 1 only and students from the School of Geosciences. Fully registered students and visiting students who are registered for the full year, please see the new course Thermal Physics (PHYS09061). Visiting students who are registered for semester two only, please see course Statistical Mechanics (PHYS09019) ****
An introduction to equilibrium thermodynamics. The First and Second laws of thermodynamics are introduced, along with the concepts of temperature, internal energy, heat, entropy and the thermodynamic potentials. Applications of thermodynamic concepts to topics such as heat engines, the expansion of gases and changes of phase are considered. The Third Law, and associated properties of entropy, complete the course. |
Information for Visiting Students
Pre-requisites | None |
Displayed in Visiting Students Prospectus? | Yes |
Course Delivery Information
|
Delivery period: 2013/14 Semester 1, Available to all students (SV1)
|
Learn enabled: No |
Quota: None |
|
Web Timetable |
Web Timetable |
Class Delivery Information |
Workshop/tutorial sessions, as arranged. |
Course Start Date |
16/09/2013 |
Breakdown of Learning and Teaching activities (Further Info) |
Total Hours:
100
(
Lecture Hours 22,
Supervised Practical/Workshop/Studio Hours 11,
Summative Assessment Hours 8,
Revision Session Hours 2,
Programme Level Learning and Teaching Hours 2,
Directed Learning and Independent Learning Hours
55 )
|
Additional Notes |
|
Breakdown of Assessment Methods (Further Info) |
Written Exam
80 %,
Coursework
20 %,
Practical Exam
0 %
|
Exam Information |
Exam Diet |
Paper Name |
Hours & Minutes |
|
Main Exam Diet S1 (December) | | 2:00 | | Resit Exam Diet (August) | | 2:00 | |
Summary of Intended Learning Outcomes
Upon successful completion of this course it is intended that a student will be able to:
1)State the Zeroth, First, Second and Third Laws of thermodynamics, if appropriate in different but equivalent forms and demonstrate their equivalence
2)Understand all the concepts needed to state the laws of thermodynamics, such as 'thermodynamic equilibrium', 'exact' and 'inexact' differentials and 'reversible' and 'irreversible' processes
3)Use the laws of thermodynamics (particularly the first and second laws) to solve a variety of problems, such as the expansion of gases and the efficiency of heat engines
4)Understand the meaning and significance of state variables in general, and of the variables P; V; T;U; S in particular, especially in the context of a simple fluid, and to manipulate these variables to solve a variety of thermodynamic problems
5) Understand the efficiency and properties of thermodynamic cycles for heat engines, refrigerators and heat pumps.
6)Define the enthalpy H, Helmholtz function F and the Gibbs function G and state their roles in determining equilibrium under different constraints
7)Manipulate (using suitable results from the theory of functions of many variables) a variety of thermodynamic derivatives, including a number of 'material properties' such as heat capacity, thermal expansivity and compressibility, and solve problems in which such derivatives appear.
8)Sketch the phase diagram of a simple substance in various representations and understand the concept of an 'equation of state' (as exemplified by the van der Waals' equation for a fluid) and the basic thermodynamics of phase transitions
9)Demonstrate a grasp of the orders of magnitudes of the various central quantities involved. |
Assessment Information
Coursework, 20%
Degree Examination, 80%
|
Special Arrangements
None |
Additional Information
Academic description |
Not entered |
Syllabus |
* Concepts: State variables and state functions, temperature scales and some useful mathematics.
* Reversible and irreversible processes
* Ideal and non-ideal fluids
* Cyclic processes, heat engines, Carnot's theorem and its corollaries.
* Entropy
* Maxwell relations and analytic thermodynamics
* Phase transitions: discontinuous, continuous, and non symmetry-breaking.
* The 3rd law
* The application of thermodynamics to different physical systems including examples from astrophysics and superconductivity
* Chemical potential and open systems
|
Transferable skills |
Not entered |
Reading list |
Not entered |
Study Abroad |
Not entered |
Study Pattern |
Not entered |
Keywords | Thermal Physics Solids Liquids Gasses Engines |
Contacts
Course organiser | Prof Graeme Ackland
Tel: (0131 6)50 5299
Email: gjackland@ed.ac.uk |
Course secretary | Miss Jillian Bainbridge
Tel: (0131 6)50 7218
Email: J.Bainbridge@ed.ac.uk |
|
© Copyright 2013 The University of Edinburgh - 13 January 2014 4:59 am
|