Archive for reference only

University Homepage
DRPS Homepage
DRPS Search
DRPS Contact
DRPS : Course Catalogue : School of Informatics : Informatics

Undergraduate Course: Energy Aware Computing (Level 10) (INFR10031)

Course Outline
SchoolSchool of Informatics CollegeCollege of Science and Engineering
Credit level (Normal year taken)SCQF Level 10 (Year 4 Undergraduate) AvailabilityAvailable to all students
SCQF Credits10 ECTS Credits5
SummaryThis course aims to introduce students to basic concepts and modern techniques in designing, modelling and evaluating energy-efficient computing systems. Low energy/power consumption is the most important design issue in modern computing devices as it has a direct impact not only on the battery life of mobile electronic equipment, but also sets limits on the operating speed of high-performance computing devices. This course will examine techniques to improve energy consumption at circuit (logic gate), micro-architecture, memory hierarchy and, at a lesser degree, at OS, compiler levels. It will also introduce state of the art approaches to energy aware computing by examining selected research papers. Practical coursework will require students to implement selected methods in research simulators and evaluate their performance.
Course description *Fundamentals
Dynamic power consumption in CMOS circuits: voltage, capacitance, switching activity, clock frequency. Leakage power. Metrics: energy efficiency vs performance

*Basic low power design techniques
Voltage scaling. Effective switched capacitance reduction. Leakage power reduction.

*Gate level power modelling
Switching activity. Glitches. Clock-gating, guarded evaluation.

*Processor power modelling and optimisation
Wattch/Simplescalar simulator. Behavioural level transformations. Architectural techniques for energy efficiency.

*Memory subsystem modelling and optimisation
Low-power cache design, e.g. way-predicting

*Power management
Dynamic Voltage and Frequency Scaling. Dynamic Power Management.

*Compiler and run-time support for low power
Scheduling for low energy consumption. Compiler-driven power efficiency.

*Current themes
Partially asynchronous systems. Power management techniques for sensor networks.

Relevant QAA Computing Curriculum Sections: Architecture, Systems Analysis and Design, Simulation and Modelling, Computer Hardware Engineering.
Entry Requirements (not applicable to Visiting Students)
Pre-requisites Students MUST have passed: Computer Architecture (INFR09009)
Co-requisites It is RECOMMENDED that students also take Computer Design (INFR09010)
Prohibited Combinations Students MUST NOT also be taking Energy Aware Computing (Level 11) (INFR11052)
Other requirements Successful completion of Year 3 of an Informatics Single or Combined Honours Degree, or equivalent by permission of the School. This course is also open to Engineering MEng students who have suitable programming expertise.

Students are expected to be competent programmers in C, C++ or Java.
Information for Visiting Students
Course Delivery Information
Not being delivered
Learning Outcomes
1 - describe and discuss the factors which contribute to the consumption of power/energy in computing systems and how they affect the system performance.
2 - explain in detail mechanisms found in modern computing systems for conserving energy.
3 - discuss, assess and compare the behaviour and performance of energy-saving techniques on computing micro-architectures
4 - gain familiarity with state-of-the-art tools such as processor simulators, memory models and compilers, and use them to implement and evaluate techniques described in the technical literature.
5 - write and present clear and concise descriptions of complex systems/methods.
Reading List
* A selection of conference and journal papers will be provided in class and the course website.
* No required textbook. Some relevant texts:
* S. Kaxiras, M. Martonosi, Computer Architecture Techniques for Power-Efficiency, Synthesis Lectures on Computer Architecture. Morgan&Claypool publishers. doi:10.2200/S00119ED1V01Y200805CAC004
* Power Aware Design Methodologies, M. Pedram, J.M. Rabaey (Eds.) ISBN 1402071523
* Power Aware Computing, R. Melhem, R. Graybill (Eds.) ISBN 0306467860
* Low Power Electronics Design, C. Piguet (Ed.), ISBN 0849319412
Additional Information
Course URL
Graduate Attributes and Skills Not entered
KeywordsNot entered
Course organiserDr Amos Storkey
Tel: (0131 6)51 1208
Course secretaryMiss Kate Weston
Tel: (0131 6)50 2692
Help & Information
Search DPTs and Courses
Degree Programmes
Browse DPTs
Humanities and Social Science
Science and Engineering
Medicine and Veterinary Medicine
Other Information
Combined Course Timetable
Important Information
© Copyright 2014 The University of Edinburgh - 12 January 2015 4:11 am