THE UNIVERSITY of EDINBURGH

DEGREE REGULATIONS & PROGRAMMES OF STUDY 2014/2015
Archive for reference only
THIS PAGE IS OUT OF DATE

University Homepage
DRPS Homepage
DRPS Search
DRPS Contact
DRPS : Course Catalogue : School of Informatics : Informatics

Postgraduate Course: Computational Systems Biology (INFR11039)

Course Outline
SchoolSchool of Informatics CollegeCollege of Science and Engineering
Credit level (Normal year taken)SCQF Level 11 (Postgraduate) AvailabilityAvailable to all students
SCQF Credits10 ECTS Credits5
SummarySystems Biology is the application of computational modelling and simulation to complex systems in biology. Examples include biochemical pathways, metabolic processes, protein complexes and information processing, genetic networks, self-organising systems, neuronal networks and cell-cell communication. This course will focus on the level of molecular and genetic systems and simulations.
Course description Course Delivery

The course will be start with a series of core lectures introducing the main topics and will be complemented by home excersizes on simulations. The later half of the course will focus on exploring existing models, how they were established, their value and their limitations.

Topics covered

* Packages and methods for simulations
* Dynamics and design of cellular reaction networks
* Metabolic pathway analysis
* Network architecture
* Genetic regulatory networks
* Protein complexes
* Self-organisation in cellular systems
* Application of modelling and simulation to drug discovery
* Systems Biology Mark-up Language

Relevant QAA Computing Curriculum Sections: Data Structures and Algorithms, Developing Technologies
Entry Requirements (not applicable to Visiting Students)
Pre-requisites Students MUST have passed: Bioinformatics 1 (INFR11016)
Co-requisites It is RECOMMENDED that students also take Bioinformatics 2 (INFR11005) OR Models and Languages for Computational Systems Biology (INFR11047)
Prohibited Combinations Other requirements For Informatics PG and final year MInf students only, or by special permission of the School.

Bioinformatics 1 (or strong biological background).

Students are expected to have: - basic biological knowledge (BIO1 course) - basic mathematical knowledge of differential equations and linear algebra - basic programming skills, in any language.
Information for Visiting Students
Pre-requisitesNone
Course Delivery Information
Not being delivered
Learning Outcomes
1 - Discuss the potential benefits and predictive value of systems biology approaches.
2 - Implement a molecular genetic model in an appropriate modelling framework.
3 - Compare and contrast existing models at the biochemical, genetic, proteomic and metabolic levels
4 - Discus the methods used to establish parameters in models and how to test and refine them.
5 - Discuss the mathematical basis for biomolecular simulations.
6 - Describe the limitations of modelling strategies.
Reading List
* Edda Klipp, Systems Biology in Practice, Wiley-VCH, 2005.
* Athel Cornish-Bowden, Enzyme kinetics / Oxford : IRL, 1988.
* David Fell, Understanding the Control of Metabolism: Portland Press, 1997.
* David L. Nelson, Lehninger principles of biochemistry / 4th ed., W.H. Freeman, 2005.
* Basic Mathematics for Biochemists, Athel Cornish-Bowden, Oxford University Press.
Kinetic Modelling in Systems Biology, Demin & Goryanin
Additional Information
Course URL http://www.inf.ed.ac.uk/teaching/courses/csb
Graduate Attributes and Skills Not entered
KeywordsNot entered
Contacts
Course organiserDr Michael Rovatsos
Tel: (0131 6)51 3263
Email: mrovatso@inf.ed.ac.uk
Course secretaryMiss Kate Weston
Tel: (0131 6)50 2692
Email: Kate.Weston@ed.ac.uk
Navigation
Help & Information
Home
Introduction
Glossary
Search DPTs and Courses
Regulations
Regulations
Degree Programmes
Introduction
Browse DPTs
Courses
Introduction
Humanities and Social Science
Science and Engineering
Medicine and Veterinary Medicine
Other Information
Combined Course Timetable
Prospectuses
Important Information
 
© Copyright 2014 The University of Edinburgh - 12 January 2015 4:11 am