THE UNIVERSITY of EDINBURGH

DEGREE REGULATIONS & PROGRAMMES OF STUDY 2014/2015
Archive for reference only
THIS PAGE IS OUT OF DATE

University Homepage
DRPS Homepage
DRPS Search
DRPS Contact
DRPS : Course Catalogue : School of Informatics : Informatics

Postgraduate Course: Models and Languages for Computational Systems Biology (INFR11047)

Course Outline
SchoolSchool of Informatics CollegeCollege of Science and Engineering
Credit level (Normal year taken)SCQF Level 11 (Postgraduate) AvailabilityAvailable to all students
SCQF Credits10 ECTS Credits5
SummaryIn this course we explore a range of modelling methods for pathways in molecular biology: whether metabolic, signalling, regulatory or transcriptional. These models draw on a rich existing theory of concurrent computational systems, with Petri nets as a unifying basic concept. Techniques range over qualitative and quantitative, discrete and continuous, differential and stochastic models. Working with these models, we look at logics for specifying and characterizing systems' behaviour. Finally, we investigate language-based approaches to modular description and analysis of systems, studying some computationally-inspired biological process calculi.
Course description * Petri nets: static and dynamic specification; matrix invariants; quantitative variants; biological interpretation and applications.
* Temporal logic: analysis of behavioural properties for biological networks; linear and branching-time logics; model-checking; discrete, stochastic and continuous variants.
* Markov systems: probabilities, discrete and continuous; Poisson and exponential distributions; Markov processes; continuous-time Markov chains; master equation and links between differential and stochastic approaches.
* Stochastic simulation: Gillespie algorithm; modifications; precision/cost trade-offs; relevant tools.
* Language-based approaches: biologically-inspired process calculi; modularity and scaling; computational tools.

Relevant QAA Computing Curriculum Sections: Data Structures and Algorithms, Developing Technologies
Entry Requirements (not applicable to Visiting Students)
Pre-requisites Co-requisites It is RECOMMENDED that students also take Computational Systems Biology (INFR11039)
Prohibited Combinations Other requirements For Informatics PG and final year MInf students only, or by special permission of the School. Some logic and probability theory. General computer science education.
Information for Visiting Students
Pre-requisitesNone
Course Delivery Information
Not being delivered
Learning Outcomes
1 - Describe different ways in which cellular pathways can be modelled, and explain advantages and disadvantages of each.
2 - Model simple pathways using a variety of methods.
3 - Program biological pathways of moderate complexity in a modular way, and employ current tools for their analysis.
4 - Describe process algebra formalisms proposed for modular biological modelling and their comparative advantages and disadvantages.
5 - Read, explore and use the literature on computational modelling in Systems Biology.
Reading List
Not yet available
Additional Information
Course URL http://www.inf.ed.ac.uk/teaching/courses/mlcsb
Graduate Attributes and Skills Not entered
KeywordsNot entered
Contacts
Course organiserDr Iain Murray
Tel: (0131 6)51 9078
Email: I.Murray@ed.ac.uk
Course secretaryMiss Kate Weston
Tel: (0131 6)50 2692
Email: Kate.Weston@ed.ac.uk
Navigation
Help & Information
Home
Introduction
Glossary
Search DPTs and Courses
Regulations
Regulations
Degree Programmes
Introduction
Browse DPTs
Courses
Introduction
Humanities and Social Science
Science and Engineering
Medicine and Veterinary Medicine
Other Information
Combined Course Timetable
Prospectuses
Important Information
 
© Copyright 2014 The University of Edinburgh - 12 January 2015 4:11 am