University Homepage
DRPS Homepage
DRPS Search
DRPS Contact
DRPS : Course Catalogue : School of Engineering : Civil

Undergraduate Course: Real Structural Behaviour and its Analysis 5 (CIVE11002)

Course Outline
SchoolSchool of Engineering CollegeCollege of Science and Engineering
Credit level (Normal year taken)SCQF Level 11 (Year 5 Undergraduate) AvailabilityAvailable to all students
SCQF Credits10 ECTS Credits5
SummaryThis course develops the student's comprehension of the nonlinear behaviour of structures. The concepts of geometrical and material nonlinearity are introduced and followed by numerical methods employed for modelling nonlinearities through the medium of finite element analysis. These advanced topics give the student the ability to analyse realistic systems with confidence. The student will develop and understand of many aspects of structural behaviour and its modelling. The course prepares the student well for a career in computational modelling in civil or structural engineering.
Course description L1 Introduction
Structure and aims of the course. Subject in the context of theoretical and applied mechanics and structural engineering practice. The limitations of linear analysis and associated assumptions of small displacement and unchanged geometry. The need for going beyond linear analysis. The concept of equilibrium path and critical points along the path with appropriate examples.
L2 Sources of nonlinearity and types of problems
How do nonlinearities arise and what types of problems in structural
engineering they produce. How can these problems be dealt with
L3 Analysis of nonlinear problems I
Nonlinear analysis using the stiffness method and the finite element
method. Formulation of a non-linear truss element with a geometric
stiffness. Applicaton to examples of linear bifurcation analysis (LBA) to
solve elastic critical load problems.
L4 Analysis of nonlinear problems II
Geometrically nonlinear analysis (GNA) of simple problems using the
truss element with load increments and Newton iterations.
L5 Analysis of nonlinear problems III
Beam-column elements with combined bending and axial force,
geometric stiffness matrix. Solution of simple LBA and GNA type
L6-9 Fundamentals of continuum mechanics
Eulerian and Lagrangian frames of reference, Green and Almansi strain measures and corresponding (Piola-Kirchoff) stress measures,
deformation gradient, total Lagrangian, updated Lagrangian and corotational approaches to GNA.
L10 Introduction to material nonlinearity; linear elasticity; nonlinear elasticity; viscoelasticity; elastoplasticity; elasto-viscoplasticity.
L11 1D elastoplasticity 1
Concepts of hardening, softening and perfect plasticity; load and
displacement control; uniaxial behaviour of different materials _$ steel, aluminium, concrete, Gray cast iron, rubber.
L12 1D elastoplasticity 2
Solution nonlinear problems; issues associated with satisfying equilibrium and constitutive law; example problems; nonlinear solution in the context of FE analysis.
L13 Numerical solution approaches
Concept of tangent stiffness; incremental methods; incremental-iterative methods; Newton Raphson method; modified Newton Raphson method; convergence criterial.
L14 Multiaxial stress
Nonlinear models for multiaxial states; principal sresses and stress
invariants; convenient form of invariants for plasticity; recap of linear rlstic stress-starin relations.
L15 Yield criteria
Concept of yielding in a multiaxial stress state; Rankine, von Mises,
Tresca, Mohr Coulomb and Drucker Prager yield criteria; representation in principal stress space; hydrostatic axis and deviatoric plane; deviatoric
plane and plane stress representations; expressing criteria in principal
stress and stress invariant forms.
L16 Multiaxial plasticity 1
Hardening, softening and perfect plasticity; Bauschinger effect;
decomposition of strain; incremental stress-strain relations; flow rule;
consistency condition; tangential modulus matrix.
L17 Multiaxial plasticity 2
Elastic predictor _$ plastic corrector concept; numerical evaluation of
the flow vector; evaluation of flow vector terms for Rankine, von Mises,Tresca, Mohr Coulomb and Drucker Prager yield criteria; issues
associated with singular regions; evaluation of hardening parameters.
L18 Revision

Entry Requirements (not applicable to Visiting Students)
Pre-requisites Students MUST have passed: Computer Methods in Structural Engineering 3 (CIVE09027) OR Finite Element Methods for Solids and Structures 4 (CIVE10022)
Prohibited Combinations Other requirements None
Information for Visiting Students
High Demand Course? Yes
Course Delivery Information
Academic year 2015/16, Available to all students (SV1) Quota:  None
Course Start Semester 1
Timetable Timetable
Learning and Teaching activities (Further Info) Total Hours: 100 ( Lecture Hours 22, Formative Assessment Hours 1, Summative Assessment Hours 6, Programme Level Learning and Teaching Hours 2, Directed Learning and Independent Learning Hours 69 )
Assessment (Further Info) Written Exam 60 %, Coursework 40 %, Practical Exam 0 %
Additional Information (Assessment) Degree examination 60%
Coursework 40%
Feedback Not entered
Exam Information
Exam Diet Paper Name Hours & Minutes
Main Exam Diet S1 (December)Real Structural Behaviour and its Analysis 52:00
Learning Outcomes
On completion of this course, the student will be able to:
  1. describe material and geometric nonlinearities through terms such as equilibrium path, limit load, collapse, bifurcation, and snap-through buckling etc.
  2. show an understanding of large displacement behaviour including the need for more precise measures of stress and strain and associated analysis methods
  3. use nonlinear finite element analysis to manually solve simple problems with geometrically nonlinear behaviour including stability and bifurcation
  4. distinguish between the roles of eigenvalue and non-linear analysis of geometrically nonlinear structural systems
  5. solve simple 1D plasticity problems through hand calculations
Reading List
McGuire, Gallagher, Ziemian (2000) "Matrix Structural Analysis, 2nd Edition". Wiley, London, UK.
Additional Information
Graduate Attributes and Skills Not entered
KeywordsNonlinear structural analysis,geometric nonlinearity,material nonlinearity,large displacement ana
Course organiserDr David Rush
Tel: (0131 6)50 6023
Course secretaryMr Craig Hovell
Tel: (0131 6)51 7080
Help & Information
Search DPTs and Courses
Degree Programmes
Browse DPTs
Humanities and Social Science
Science and Engineering
Medicine and Veterinary Medicine
Other Information
Combined Course Timetable
Important Information
© Copyright 2015 The University of Edinburgh - 18 January 2016 3:39 am