# DEGREE REGULATIONS & PROGRAMMES OF STUDY 2015/2016

 University Homepage DRPS Homepage DRPS Search DRPS Contact
DRPS : Course Catalogue : School of Engineering : Electronics

# Undergraduate Course: Digital Signal Analysis 4 (ELEE10010)

 School School of Engineering College College of Science and Engineering Credit level (Normal year taken) SCQF Level 10 (Year 4 Undergraduate) Availability Available to all students SCQF Credits 10 ECTS Credits 5 Summary Students will study the theory, and the practical application, of statistical analysis to signals and systems described by random processes. The topic will be approached from both time and frequency domains with an emphasis on studying the effect that analysis tools have on the resulting analysis. The course provides in-depth coverage of the discrete Fourier transform, and its role in spectrum estimation, as well as the design of finite impulse response filters, and their role in signal identification. In particular, issues such as resolution and dynamic range of an analysis system are dealt with, to give students an appreciation of how to apply the theory to engineering problems. Course description Students will explore the analysis of practical signals through time and frequency analysis techniques, and understand the effect of each step in the process. After successful completion of this course a student should be able to: explain the relationships between and be able to manipulate time domain and frequency domain representations of signals; apply correlation techniques to an analytic or numerical problem, and relate the outcome to the statistical properties of the signal source(s); correctly define probability density functions and cumulative distribution functions, and be able to manipulate them to find moments of random variables and their sums; define the distinctions between wide-sense stationary, stationary, and ergodic processes, and be able to reason to which category a random process belongs; derive the power spectrum of a signal; define techniques for calculating moments in spectral and temporal domains; explain the importance of linear phase filter design and apply time and frequency techniques to design a FIR filter; evaluate power spectral density at the output of a linear filter given the PSD at the input; recognise the effect of resolution and windowing functions upon the discrete Fourier transform; analyse the effects of downsampling and upsampling on a signal and recognise the importance of decimation and interpolation filtering; explain the basis of matched filtering and be able to determine an appropriate filter for a given problem; apply a Wiener filter to the detection of a signal corrupted by additive noise, and for signal prediction.
 Pre-requisites It is RECOMMENDED that students have passed Signal and Communication Systems 3 (ELEE09017) Co-requisites Prohibited Combinations Students MUST NOT also be taking Discrete-time Signal Analysis (MSc) (PGEE10018) Other requirements None Additional Costs Purchase of course textbook (from £56.99)
 Pre-requisites Course(s) covering Fourier transforms, linear systems and probability High Demand Course? Yes
 Academic year 2015/16, Available to all students (SV1) Quota:  None Course Start Semester 1 Timetable Timetable Learning and Teaching activities (Further Info) Total Hours: 100 ( Lecture Hours 21, Seminar/Tutorial Hours 10, Formative Assessment Hours 1, Summative Assessment Hours 2, Programme Level Learning and Teaching Hours 2, Directed Learning and Independent Learning Hours 64 ) Assessment (Further Info) Written Exam 100 %, Coursework 0 %, Practical Exam 0 % Additional Information (Assessment) Assessment will be based on a single examination paper of 2 hours duration. Feedback A formative class test is run in week 4 in the form of a single long-form exam question, of a similar standard to the degree exam, covering material studied during the first three weeks. This is returned the following week, with a sample solution and comments on the student¿s attempt. Students are expected to consider this feedback, and reflect on their approach to study for this course. If students wish more detailed feedback, this can be discussed on an individual basis during the weekly Office Hour. Exam Information Exam Diet Paper Name Hours & Minutes Main Exam Diet S1 (December) Digital Signal Analysis 4 2:00
 On completion of this course, the student will be able to: AAn in-depth knowledge of the principal analysis techniques that can be applied to random processesThe ability to produce a detailed specification of an appropriate analysis framework for a given problem scenarioThe skills to interpret the result of an analysis of a random process in view of the limitations of the applied analysis
 Digital Signal Processing: Principles, Algorithms and Applications, New International Edition, Proakis & Manolakis - £56.99 from Blackwells or Amazon
 Graduate Attributes and Skills Students will be able to apply the learned analytical techniques to practical problems throughout their career. Both the ability to apply theory, and the understanding of the effect of design choices on the resulting analysis output, will enable the student to gain a deep insight into the problem being explored. Students will have an appreciation of the effects of working with limited data, and be able to adjust their analysis accordingly. Students will also have the opportunity to experiment with applying the techniques through MATLAB code provided during the course, giving them an understanding of how the techniques can be transferred to their working life. Additional Class Delivery Information 2 lectures, 1 examples class and 1 tutorial per week Keywords Fourier transform,random process,spectral density,digital filter,signal processing,correlation
 Course organiser Dr David Laurenson Tel: (0131 6)50 5579 Email: Dave.Laurenson@ed.ac.uk Course secretary Mrs Sharon Potter Tel: (0131 6)51 7079 Email: Sharon.Potter@ed.ac.uk
 Navigation Help & Information Home Introduction Glossary Search DPTs and Courses Regulations Regulations Degree Programmes Introduction Browse DPTs Courses Introduction Humanities and Social Science Science and Engineering Medicine and Veterinary Medicine Other Information Combined Course Timetable Prospectuses Important Information
© Copyright 2015 The University of Edinburgh - 18 January 2016 3:58 am