THE UNIVERSITY of EDINBURGH

DEGREE REGULATIONS & PROGRAMMES OF STUDY 2015/2016

University Homepage
DRPS Homepage
DRPS Search
DRPS Contact
DRPS : Course Catalogue : School of Informatics : Informatics

Undergraduate Course: Introductory Applied Machine Learning (INFR10063)

Course Outline
SchoolSchool of Informatics CollegeCollege of Science and Engineering
Credit level (Normal year taken)SCQF Level 10 (Year 3 Undergraduate) AvailabilityAvailable to all students
SCQF Credits10 ECTS Credits5
SummarySince the early days of AI, researchers have been interested in making computers learn, rather than simply programming them to do tasks. This is the field of machine learning. The main area that will be discussed is supervised learning, which is concerned with learning to predict an output, given inputs. A second area of study is unsupervised learning, where we wish to discover the structure in a set of patterns; there is no output 'teacher signal'.

The primary aim of the course is to provide the student with a set of practical tools that can be applied to solve real-world problems in machine learning, coupled with an appropriate, principled approach to formulating a solution.
Course description Introduction to Machine Learning and its Goals. Introduction to Data and Models. Memory based methods. Decision Trees. Error functions, Minimizing Error. Regression, Logistic Regression, Neural Networks. Margin Based Methods: Perceptron, Support Vector Machines. Na´ve Bayes. Dimensionality Reduction. Clustering: K-means, Simple Gaussian Mixture Models, Hierarchical Clustering. Boosting Approaches. Model Averaging, Mixtures of Experts. Evaluation of Performance.

[We will also use a modern machine learning programming environment]

Relevant QAA Computing Curriculum Sections: Artificial Intelligence, Human-Computer Interaction (HCI), Intelligent Information Systems Technologies, Natural Language Computing, Simulation and Modelling, Theoretical Computing
Entry Requirements (not applicable to Visiting Students)
Pre-requisites Co-requisites
Prohibited Combinations Other requirements This course is open to all Informatics students including those on joint degrees. For external students where this course is not listed in your DPT, please seek special permission from the course organiser.

Maths requirements:

1 - Probability theory: Discrete and continuous univariate random variables. Expectation, variance. Univariate Gaussian distribution. Joint and conditional distributions.

2 - Linear algebra: Vectors and matrices: definitions, addition. Matrix multiplication, matrix inversion. Eigenvectors, determinants quadratic forms.

3 - Calculus: Functions of several variables. Partial differentiation. Multivariate maxima and minima.

4 - Special functions: Log, exp

5 - Geometry: Basics of lines, planes and hyperplanes. Coordinate geometry of circle, sphere, ellipse, ellipsoid and n-dimensional generalizations.

6 - Entropy: is useful, but will be covered in the lectures.

Programming requirements: Students should be able to program in a modern object-oriented language such as Python.
Information for Visiting Students
Pre-requisitesVisiting students are required to have comparable background to that
assumed by the course prerequisites listed in the Degree Regulations &
Programmes of Study. If in doubt, consult the course lecturer.
High Demand Course? Yes
Course Delivery Information
Academic year 2015/16, Available to all students (SV1) Quota:  None
Course Start Semester 1
Timetable Timetable
Learning and Teaching activities (Further Info) Total Hours: 100 ( Lecture Hours 20, Seminar/Tutorial Hours 4, Supervised Practical/Workshop/Studio Hours 4, Summative Assessment Hours 2, Programme Level Learning and Teaching Hours 2, Directed Learning and Independent Learning Hours 68 )
Assessment (Further Info) Written Exam 75 %, Coursework 25 %, Practical Exam 0 %
Additional Information (Assessment) There will be at least one assignment, where a number machine learning methods would be applied to a dataset. There could be more than one dataset available to cater for different tastes.

You should expect to spend approximately 22 hours on the coursework for this course.

If delivered in semester 1, this course will have an option for semester 1 only visiting undergraduate students, providing assessment prior to the end of the calendar year.
Feedback Not entered
Exam Information
Exam Diet Paper Name Hours & Minutes
Main Exam Diet S2 (April/May)2:00
Resit Exam Diet (August)2:00
Academic year 2015/16, Part-year visiting students only (VV1) Quota:  None
Course Start Semester 1
Timetable Timetable
Learning and Teaching activities (Further Info) Total Hours: 100 ( Lecture Hours 20, Seminar/Tutorial Hours 4, Supervised Practical/Workshop/Studio Hours 4, Summative Assessment Hours 2, Programme Level Learning and Teaching Hours 2, Directed Learning and Independent Learning Hours 68 )
Assessment (Further Info) Written Exam 75 %, Coursework 25 %, Practical Exam 0 %
Additional Information (Assessment) There will be at least one assignment, where a number machine learning methods would be applied to a dataset. There could be more than one dataset available to cater for different tastes.

You should expect to spend approximately 22 hours on the coursework for this course.

If delivered in semester 1, this course will have an option for semester 1 only visiting undergraduate students, providing assessment prior to the end of the calendar year.
Feedback Not entered
Exam Information
Exam Diet Paper Name Hours & Minutes
Main Exam Diet S1 (December)2:00
Learning Outcomes
On completion of this course, the student will be able to:
  1. Explain the scope, goals and limits of machine learning, and the main sub-areas of the field.
  2. Describe the various techniques covered in the syllabus and where they fit within the structure of the discipline.
  3. Students should be able to critically compare, contrast and evaluate the different ML techniques in terms of their applicability to different Machine Learning problems.
  4. Given a data set and problem students should be able to use appropriate software to apply these techniques to the data set to solve the problem.
  5. Given appropriate data students should be able to use a systematic approach to conducting experimental investigations and assessing scientific hypotheses.
Reading List
Data Mining: Practical Machine Learning Tools and Techniques (Second Edition) I. H. Witten and E. Frank, Morgan Kaufmann, 2005. ISBN 0-12-088407-0
Additional Information
Course URL http://www.inf.ed.ac.uk/teaching/courses/iaml
Graduate Attributes and Skills Not entered
KeywordsNot entered
Contacts
Course organiserDr Nigel Goddard
Tel: (0131 6)51 3091
Email: Nigel.Goddard@ed.ac.uk
Course secretaryMiss Beth Muir
Tel: (0131 6)51 7607
Email: beth.muir@ed.ac.uk
Navigation
Help & Information
Home
Introduction
Glossary
Search DPTs and Courses
Regulations
Regulations
Degree Programmes
Introduction
Browse DPTs
Courses
Introduction
Humanities and Social Science
Science and Engineering
Medicine and Veterinary Medicine
Other Information
Combined Course Timetable
Prospectuses
Important Information
 
© Copyright 2015 The University of Edinburgh - 18 January 2016 4:13 am