Undergraduate Course: Elliptic Partial Differential Equations (MATH10089)
Course Outline
School  School of Mathematics 
College  College of Science and Engineering 
Credit level (Normal year taken)  SCQF Level 10 (Year 4 Undergraduate) 
Availability  Available to all students 
SCQF Credits  10 
ECTS Credits  5 
Summary  The aim of the course is to give an introduction to elliptic partial differential equations and their applications in geometry, material sciences, biology and finance. The student will learn about important concepts such as the notion of a weak solution, the maximum principle as well as important theoretical results, for example the Krylov
Safonov theorem. 
Course description 
Examples of elliptic PDEs and various types of weak solutions.
Weak differentiability, Sobolev spaces and classical solutions.
Harmonic functions: Mean value theorem, Greens function Poisson kernel.
Maximum principle for general linear equations.
Divergence form equations, Caccioppoli's inequality, Morrey's theorem in two dimensions.
Nondivergence form equations, strong and viscosity solutions.
Aleksandrov's maximum principle.
KrylovSafonov's theorem.

Information for Visiting Students
Prerequisites  None 
Course Delivery Information
Not being delivered 
Learning Outcomes
1. Reformulate equations of divergence form through integral identities using partial integration.
2. Evaluate or estimate the maximum and minimum of solutions of elliptic equation using the maximum principle.
3. Infer regularity of solutions from that of given data.
4. Explicitly compute the (radially) symmetric solutions and Green/Poisson kernels for the Laplace operator.
5. Estimate first and second order derivatives of solutions via integral norms of solution itself.
6. Compare qualitative properties of weak and viscosity solutions.

Reading List
Recommended :
E. Landis, Second Order Equations of Elliptic and Parabolic Type, AMS 1998
Qing Han, Fanghua Lin, Courant Institute Lecture notes, NYU, 2011
D. Gilbarg, N. Trudinger, Elliptic Partial Differential Equations of Second Order, Springer, 2011 
Additional Information
Graduate Attributes and Skills 
Not entered 
Keywords  EPDE 
Contacts
Course organiser  Dr Martin Dindos
Tel:
Email: M.Dindos@ed.ac.uk 
Course secretary  Mrs Alison Fairgrieve
Tel: (0131 6)50 5045
Email: Alison.Fairgrieve@ed.ac.uk 

