THE UNIVERSITY of EDINBURGH

DEGREE REGULATIONS & PROGRAMMES OF STUDY 2015/2016

University Homepage
DRPS Homepage
DRPS Search
DRPS Contact
DRPS : Course Catalogue : School of Mathematics : Mathematics

Postgraduate Course: Risk-Neutral Asset Pricing (MATH11157)

Course Outline
SchoolSchool of Mathematics CollegeCollege of Science and Engineering
Credit level (Normal year taken)SCQF Level 11 (Postgraduate) AvailabilityNot available to visiting students
SCQF Credits10 ECTS Credits5
SummaryTo provide solid mathematical foundations for pricing derivative products in financial markets, highlighting the points where the idealized and the realistic diverge.
Course description - Risk-neutral valuation of contingent claims. Pricing PDEs.
- Some important option types in the Black-Scholes setting. Parameter sensitivity (Greeks).
- Incomplete markets, pricing and hedging.
- The term structure of interest rates: short rate models (Vasicek, CIR) and the HJM framework.
- Pricing of credit derivatives.
Entry Requirements (not applicable to Visiting Students)
Pre-requisites Co-requisites
Prohibited Combinations Other requirements None
Course Delivery Information
Academic year 2015/16, Not available to visiting students (SS1) Quota:  None
Course Start Semester 2
Timetable Timetable
Learning and Teaching activities (Further Info) Total Hours: 100 ( Lecture Hours 18, Seminar/Tutorial Hours 4, Programme Level Learning and Teaching Hours 2, Directed Learning and Independent Learning Hours 76 )
Assessment (Further Info) Written Exam 100 %, Coursework 0 %, Practical Exam 0 %
Additional Information (Assessment) Examination 100%
Feedback Not entered
Exam Information
Exam Diet Paper Name Hours & Minutes
Main Exam Diet S2 (April/May)Risk-Neutral Asset Pricing (MATH11157)2:00
Learning Outcomes
It is intended that students will demonstrate
- familiarity with the fundamental tools of no-arbitrage pricing (Girsanov change of measure, martingale representation),
- knowledge of most important option types (European, American, exotic),
- familiarity with the PDE methodology for computing option prices,
- understanding the essentials of short rate and forward rate models (i.e. HJM),
- familiarity with the basic credit derivatives and with the problems in their pricing (default sensitivity),
- understanding the main uses of derivatives in hedging, arbitrage and speculations,
by answering relevant exam questions.
Reading List
Bingham, N.H. & Kiesel, R. (2004). Risk-Neutral Valuation. Pricing and Hedging of Financial Derivatives. Springer.
Lamberton, D. & Lapeyre, B. (1996). Introduction to Stochastic Calculus Applied to Finance. Chapman & Hall.
Williams, D. (1991). Probability with Martingales. CUP.
Additional Information
Graduate Attributes and Skills Not entered
Special Arrangements MSc Financial Modelling and Optimization and MSc Computational Mathematical Finance students only.
KeywordsRNAP
Contacts
Course organiserDr David Siska
Tel: (0131 6)51 9091
Email: D.Siska@ed.ac.uk
Course secretaryMr Thomas Robinson
Tel: (0131 6)50 4885
Email: Thomas.Robinson@ed.ac.uk
Navigation
Help & Information
Home
Introduction
Glossary
Search DPTs and Courses
Regulations
Regulations
Degree Programmes
Introduction
Browse DPTs
Courses
Introduction
Humanities and Social Science
Science and Engineering
Medicine and Veterinary Medicine
Other Information
Combined Course Timetable
Prospectuses
Important Information
 
© Copyright 2015 The University of Edinburgh - 18 January 2016 4:26 am