THE UNIVERSITY of EDINBURGH

DEGREE REGULATIONS & PROGRAMMES OF STUDY 2017/2018

University Homepage
DRPS Homepage
DRPS Search
DRPS Contact
DRPS : Course Catalogue : School of Geosciences : Geography

Undergraduate Course: Quantitative Methods in Geography (GEGR09004)

Course Outline
SchoolSchool of Geosciences CollegeCollege of Science and Engineering
Credit level (Normal year taken)SCQF Level 9 (Year 3 Undergraduate) AvailabilityAvailable to all students
SCQF Credits10 ECTS Credits5
SummaryThis course provides a further introduction to statistical methods in Geography using relevant example from across the discipline. Course work is designed to give students experience in using the methods to analyse real world data and thereby gain insights into their value and limitations.

Please note this is a core course for students on the Geography Degree Programmes, and Sustainable Development (Geography Pathway). This course is open to all university students, however priority will be given to the degree programmes listed here.
Course description This course is intended to provide a broad introduction to the types of quantitative methods (principally statistical) used in both physical and human geography, with the goal of readying students for the use of these methods in their dissertation (and other) research. Material will be presented through both lectures and practicals, in which the practical session will build on the material introduced in lecture and instruct in how to apply the methods to actual data. Software tools to aid statistical analysis will be introduced through these practicals.

Topics introduced will include types of data, data presentation, correlation and regression, probability, significance and hypothesis testing, and nonparametric statistics (such as logistic regression).

Students┐ grades will be determined entirely through a written coursework assessment which will be due before the exam diet.
Entry Requirements (not applicable to Visiting Students)
Pre-requisites Co-requisites
Prohibited Combinations Other requirements None
Information for Visiting Students
Pre-requisitesNone
High Demand Course? Yes
Course Delivery Information
Academic year 2017/18, Available to all students (SV1) Quota:  None
Course Start Block 2 (Sem 1)
Timetable Timetable
Learning and Teaching activities (Further Info) Total Hours: 100 ( Lecture Hours 10, Supervised Practical/Workshop/Studio Hours 6, Feedback/Feedforward Hours 2, Programme Level Learning and Teaching Hours 2, Directed Learning and Independent Learning Hours 80 )
Assessment (Further Info) Written Exam 0 %, Coursework 100 %, Practical Exam 0 %
Additional Information (Assessment) Written Exam: 0%, Course Work: 100 %, Practical Exam: 0%.

The coursework assignment will be for the most part numerical in nature, with short-form (non-essay) answers. (See Assessment deadlines for the deadline.) The assessment will be released on LEARN with detailed instructions, and submission and feedback will be via the TurnItIn facility. Students will work with similar but unique data sets, so each student will be required to download their own data to complete the assessment.

To provide students with a chance to engage with the course materials early on, a non-assessed (formative) assignment will be posted on LEARN approximately halfway through the course, with model answers posted one week later. You will then receive feedback through anonymous peer assessment. Students must carry out the formative assignment and peer assessment steps before being receiving their data for the assessment.
Feedback The practicals will take you through computer-based exercises that will instruct you in the methods required for assessment, with instructors and demonstrators on hand

The course organisers are available for contact by email regarding questions about course and assessment material (for detailed questions, scheduled meetings may be more appropriate)

There will be a formative feedback assignment that will test your competence in the methods introduced (methods which will also be required for summative assessment). A model answer will be provided and the assessment will be peer-reviewed.
No Exam Information
Learning Outcomes
On completion of this course, the student will be able to:
  1. understand differences between types of quantitative data (categorical, ordinal and scale) and when each is applicable
  2. comprehend, generate, and critically discuss presentations of quantitative data (both descriptive statistics and graphical presentations)
  3. carry out tests of relationships between different variables and determine which tests are most appropriate for a given set of data
  4. carry out formal statistical testing (e.g. differences of means) and be able to critique the test in terms of its results and assumptions
  5. demonstrate a broad, integrated knowledge and understanding of quantitative methods, their principles and appropriate application within Geography
Reading List
Most of the suggested readings will be from the Online Stats Book (http://onlinestatbook.com/2/index.html). This resource contains discussions of a number of statistical subjects at all levels. A particularly valuable feature is the MCQ quiz sections that appear at the end of certain sections. In your review you are encouraged to attempt these questions to test your own knowledge.

We also recommend the following as a ┐numbers free┐ gentle approach to statistics:
Wheelan, Charles. Naked Statistics: Stripping the Dread from Data (New York, NY, W. W. Norton & Company, 2014). 282 pp. ISBN 978-0-393-07195-5

Additional Information
Graduate Attributes and Skills Students will be able to demonstrate skills in the use of statistical methods and basic theory in Geography, as well as using SPSS software.
Students will also be able to demonstrate an ability to acquire and apply specialist knowledge.
Finally, students will be able to communicate effectively both orally and in writing.
KeywordsGEGR09004
Contacts
Course organiserDr Daniel Goldberg
Tel: (0131 6)50 2561
Email: Dan.Goldberg@ed.ac.uk
Course secretaryMiss Kirsty Allan
Tel: (0131 6)50 9847
Email: Kirsty.Allan@ed.ac.uk
Navigation
Help & Information
Home
Introduction
Glossary
Search DPTs and Courses
Regulations
Regulations
Degree Programmes
Introduction
Browse DPTs
Courses
Introduction
Humanities and Social Science
Science and Engineering
Medicine and Veterinary Medicine
Other Information
Combined Course Timetable
Prospectuses
Important Information