University Homepage
DRPS Homepage
DRPS Search
DRPS Contact
DRPS : Course Catalogue : School of Physics and Astronomy : Undergraduate (School of Physics and Astronomy)

Undergraduate Course: Stellar Evolution (PHYS10045)

Course Outline
SchoolSchool of Physics and Astronomy CollegeCollege of Science and Engineering
Credit level (Normal year taken)SCQF Level 10 (Year 4 Undergraduate) AvailabilityAvailable to all students
SCQF Credits10 ECTS Credits5
SummaryThis course investigates particularly the post main sequence stages of stellar evolution. The physical processes involved are applied to the evolution of core and envelope through the red giant phase to the final fate as a Supernova explosion.
Course description - state the definition of a polytrope and relate it to the structure of stars
- define `homology' and use it to derive the properties of stars on the Main Sequence and during stages of their subsequent evolution
- state the virial theorem and apply it to physical situations
- describe the nature of quantum degeneracy pressure and its relevance to stellar evolution
- describe the evolution of stars on the Main Sequence and explain what drives the evolution
- explain the meaning of the Schonberg-Chandrasehkar mass limit and discuss its relevance to stellar evolution
- describe changes in size / internal structure of stars as a function of stellar mass and age
- explain the origin of convective instability and describe its relevance to stellar evolution
- sketch the HR diagram of star clusters of various ages and account for the locus of stars in terms of the evolutionary stages of stars
- describe the role of mass lass in stellar evolution
- discuss the origin of the Chandrasekhar mass limit and its consequences for stellar evolution
- describe the final stages of stellar evolution
Entry Requirements (not applicable to Visiting Students)
Pre-requisites Students MUST have passed: Thermal Physics (PHYS09061)
Students MUST have passed: Astrophysics (PHYS10102)
Prohibited Combinations Other requirements At least 80 credit points accrued in courses of SCQF Level 9 or 10 drawn from Schedule Q.
Information for Visiting Students
High Demand Course? Yes
Course Delivery Information
Academic year 2018/19, Available to all students (SV1) Quota:  None
Course Start Semester 2
Timetable Timetable
Learning and Teaching activities (Further Info) Total Hours: 100 ( Lecture Hours 22, Summative Assessment Hours 2, Revision Session Hours 2, Programme Level Learning and Teaching Hours 2, Directed Learning and Independent Learning Hours 72 )
Assessment (Further Info) Written Exam 90 %, Coursework 10 %, Practical Exam 0 %
Additional Information (Assessment) Coursework, 10%
Degree Examination, 90%
Visiting Student Variant Assessment
Feedback Not entered
Exam Information
Exam Diet Paper Name Hours & Minutes
Main Exam Diet S2 (April/May)2:00
Learning Outcomes
On completion of this course, the student will be able to:
  1. Define and apply basic physical tools for describing the structure and evolution of starts, including polytropes, homology, and the virial theorem
  2. Describe the evolution of stars from the Main Sequence to their evolutionary end points
  3. Explain the physical processes that drive the evolution of stars
  4. Sketch and explain the HR diagram of star clusters of various ages and colour-magnitude tracks as a function of age for single stars
  5. Describe the role of mass loss in stellar evolution
Reading List
Additional Information
Course URL
Graduate Attributes and Skills Not entered
Course organiserDr Beth Biller
Tel: 0131 668 8349
Course secretaryMiss Stephanie Blakey
Tel: (0131 6)68 8261
Help & Information
Search DPTs and Courses
Degree Programmes
Browse DPTs
Humanities and Social Science
Science and Engineering
Medicine and Veterinary Medicine
Other Information
Combined Course Timetable
Important Information