Postgraduate Course: Algorithmic Game Theory and its Applications (INFR11020)
Course Outline
School | School of Informatics |
College | College of Science and Engineering |
Credit level (Normal year taken) | SCQF Level 11 (Year 4 Undergraduate) |
Availability | Available to all students |
SCQF Credits | 10 |
ECTS Credits | 5 |
Summary | Game theory is the formal study of interaction between "self-interested" (or "goal-oriented") "systems" (or "agents" or "decision makers" or "players"), & strategic scenarios that arise in such settings. It began life in Economics in the 1940's with the work of von Neumann & Morgenstern, but has since been applied to an extraordinary range of subjects, including political science, evolutionary biology & even to inspection regimes for arms control.
Game theory has for years also played an important, if less recognized, role in several branches of computer science. Applications within computer science include the use of games in automated verification & model checking to model computing systems in an unknown and possibly adverse environment. In AI games are applied to the analysis of multi-agent systems. Recently, with the advent of the internet and e-commerce, many game theoretic questions in the interplay between economics & computing have received extensive attention. These include electronic auctions, & more generally mechanism design questions (inverse game theory) related to finding incentive structures for cooperation between independent entities on the internet.
Wherever game theory plays a quantitative role, algorithmic and computational questions related to "solving" games are also of central importance.
This course aims to bring together as a coherent body of knowledge the game theoretic algorithms & models that underpin several flourishing subjects at the intersection of computer science, economics and e-commerce, & AI. |
Course description |
Examples of diverse games
Zero-sum two-person games: LP, simplex, LP-duality, mixed strategies and the minimax theorem
General games in strategic form:
- Equilibria and Nash's theorem
- 2-player equilibria: Lemke-Howson algorithm and its variants.
Games in Extensive form (mainly zero-sum, perfect information):
- Game trees. Relation to Strategic games
- and / or game graphs and reachability games
- bisimulation, simulation, parity games, and other omega-games on automata (finitely presented, infinite duration games)
- mean value games, MDPs, and stochastic games
Mechanism design and inverse game theory: designing games where selfish players will behave as desired:
- Vickery auctions and other mechanisms
- Combinatorial auctions
- Incentive structures for the internet.
Relevant QAA Computing Curriculum Sections: Artificial Intelligence, Data Structures and Algorithms, e-commerce, Simulation and Modelling, Theoretical Computing
|
Entry Requirements (not applicable to Visiting Students)
Pre-requisites |
It is RECOMMENDED that students have passed
Algorithms and Data Structures (INFR10052)
|
Co-requisites | |
Prohibited Combinations | Students MUST NOT also be taking
Algorithmic Game Theory and its Applications (UG) (INFR11218)
|
Other requirements | MSc students must register for this course, while Undergraduate students must register for INFR11218 instead.
This course is open to all Informatics students including those on joint degrees. For external students where this course is not listed in your DPT, please seek special permission from the course organiser.
Some mathematical maturity, and concretely some basic background in linear algebra; discrete mathematics; probability; at the level of the year 1 and 2 required undergraduate courses in these topics.
Background in algorithms, and exposure to computational complexity theory (NP - completeness, etc.) is desirable but not required. |
Information for Visiting Students
Pre-requisites | As above. |
High Demand Course? |
Yes |
Course Delivery Information
|
Academic year 2024/25, Available to all students (SV1)
|
Quota: None |
Course Start |
Semester 2 |
Timetable |
Timetable |
Learning and Teaching activities (Further Info) |
Total Hours:
100
(
Lecture Hours 20,
Seminar/Tutorial Hours 8,
Summative Assessment Hours 2,
Programme Level Learning and Teaching Hours 2,
Directed Learning and Independent Learning Hours
68 )
|
Assessment (Further Info) |
Written Exam
80 %,
Coursework
20 %,
Practical Exam
0 %
|
Feedback |
Marked coursework, plus weekly tutorial sheets which are not marked, but whose solutions are discussed at weekly tutorials. |
Exam Information |
Exam Diet |
Paper Name |
Hours & Minutes |
|
Main Exam Diet S2 (April/May) | Algorithmic Game Theory and its Applications (INFR11020) | 2:120 | |
Learning Outcomes
On completion of this course, the student will be able to:
- understand various models of games, how they are related, and how they arise in various applications in computer science and elsewhere
- understand linear programming and some of its broad applicability
- understand how algorithms are used to "solve" such games and their efficiency
- model various scenarios as strategic games, and devise algorithms to solve them
- understand the aims of the current research frontier
|
Reading List
M. Maschler, E. Solan, & S. Zamir, "Game Theory", 2013.
V. Chvátal, "Linear Programming", 1980.
N. Nisan, T. Roughgarden, E. Tardos, and V. Vazirani (editors), "Algorithmic Game Theory", 2007.
Y. Shoham & K. Leyton-Brown, "Multiagent systems: algorithmic, game-theoretic, and logical foundations", 2009.
A. Mas-Colell, M. Whinston, and J. Green, "Microeconomic Theory", 1995.
T. Roughgarden, "Twenty Lectures on Algorithmic Game Theory", 2016. |
Contacts
Course organiser | Dr Aris Filos-Ratsikas
Tel:
Email: Aris.Filos-Ratsikas@ed.ac.uk |
Course secretary | Miss Yesica Marco Azorin
Tel: (0131 6)50 5194
Email: ymarcoa@ed.ac.uk |
|
|