Undergraduate Course: Dynamics 2 (MECE08009)
Course Outline
School | School of Engineering |
College | College of Science and Engineering |
Credit level (Normal year taken) | SCQF Level 8 (Year 2 Undergraduate) |
Availability | Available to all students |
SCQF Credits | 10 |
ECTS Credits | 5 |
Summary | This course aims to provide a basic understanding of the Laws of Newtonian Mechanics for bodies and systems of bodies in plane motion, and to achieve proficiency in their use in conjunction with kinematic principles for a range of mechanical engineering applications.
|
Course description |
1. Dynamics of Particles
Newton's Laws of Motion and the nature of forces; D'Alembert approach; dynamical laws of single particle; dynamical theorems for systems of particles; Linear and Angular momentum; mass centre properties; motion in polar coordinates; Coriolis acceleration. Central Force motion and orbits.
2. Systems of Bodies
Rigid body as a model; dynamical laws for rigid bodies in pure translation, fixed axis rotation and general plane motion; inertia couple; moments of inertia; inertia theorems; rolling versus sliding. Kinematic relations between interacting bodies: circular motion, gear drives, belts and pulleys, rolling on a plane. Applications to coupled systems, power transmission, simple vehicles, rotational unbalance, static and dynamic-balancing of rotors; introduce balancing of reciprocating mechanisms.
3. Work - Energy Approach
Kinetic and potential energy; work and power; work-energy theorems applied to system calculations; the conservative system as a special case.
4. Oscillatory Motion
Introduction to oscillations; differential equations of translational and rotational SDF systems, free vibration, natural frequency; damping and critical damping; introduction to resonance, features of vibratory phenomena.
5. Gyroscopic Torque
Introduction to gyroscopic torque and gyroscopic effects; angular momentum vector of a rotor; precession applications.
|
Entry Requirements (not applicable to Visiting Students)
Pre-requisites |
|
Co-requisites | |
Prohibited Combinations | |
Other requirements | None |
Information for Visiting Students
Pre-requisites | None |
High Demand Course? |
Yes |
Course Delivery Information
|
Academic year 2024/25, Available to all students (SV1)
|
Quota: None |
Course Start |
Semester 2 |
Timetable |
Timetable |
Learning and Teaching activities (Further Info) |
Total Hours:
100
(
Lecture Hours 20,
Seminar/Tutorial Hours 9,
Supervised Practical/Workshop/Studio Hours 1.5,
Formative Assessment Hours 1,
Summative Assessment Hours 3.5,
Programme Level Learning and Teaching Hours 2,
Directed Learning and Independent Learning Hours
63 )
|
Assessment (Further Info) |
Written Exam
50 %,
Coursework
50 %,
Practical Exam
0 %
|
Additional Information (Assessment) |
Degree Examination 50%; Coursework 50%
The School has a 40% rule for this course, whereby you must achieve a minimum of 40% in coursework and 40% in written exam components, as well as an overall mark of 40% to pass a course. If you fail a course you will be required to resit it. You are only required to resit components which have been failed. |
Feedback |
Not entered |
Exam Information |
Exam Diet |
Paper Name |
Hours & Minutes |
|
Main Exam Diet S2 (April/May) | | 1:30 | | Resit Exam Diet (August) | | 1:30 | |
Learning Outcomes
On completion of this course, the student will be able to:
- Model mechanical systems as plane assemblies of masses and inertias, and draw clear accurate linked free-body diagrams.
- Identify kinematic relations between coupled elements using cables, gears and pure rolling.
- Calculate moments of inertias of a range of assemblies, using parallel axes and perpendicular axes theorems.
- Formulate energy expressions for systems and use concepts of work and power to determine motion.
- Understand the properties of single degree of freedom oscillatory systems, and the importance of resonant systems in engineering.
|
Contacts
Course organiser | Dr John Chick
Tel: (0131 6)50 5675
Email: John.Chick@ed.ac.uk |
Course secretary | Miss Maryna Vlasova
Tel:
Email: mvlasova@ed.ac.uk |
|
|