THE UNIVERSITY of EDINBURGH

DEGREE REGULATIONS & PROGRAMMES OF STUDY 2024/2025

Timetable information in the Course Catalogue may be subject to change.

University Homepage
DRPS Homepage
DRPS Search
DRPS Contact
DRPS : Course Catalogue : School of Engineering : School (School of Engineering)

Undergraduate Course: Engineering Mathematics 2A (SCEE08009)

Course Outline
SchoolSchool of Engineering CollegeCollege of Science and Engineering
Credit level (Normal year taken)SCQF Level 8 (Year 2 Undergraduate) AvailabilityAvailable to all students
SCQF Credits10 ECTS Credits5
SummaryOrdinary differential equations, transforms and Fourier series with applications to engineering. Linear differential equations, homogeneous and non-homogeneous equations, particular solutions for standard forcings; Laplace transforms and applications; standard Fourier series, half range sine and cosine series, complex form; convergence of Fourier series, differentiation and integration of Fourier series. Introduction to Partial Differential Equations.
Course description Differential Equations:
- Linear Differential Equations [1 lecture]
- Linear constant coefficient Differential Equations [3 lectures]
- Second order linear constant coefficient differential equations, forcing and damping [2 lectures]

Laplace Transforms:
- Definition, simple transforms, properties, inverse and shift theorem [3 lectures]
- Solution of ODEs [3 lectures]

Fourier Series:
- Fourier series, coefficients, even/odd functions, linearity, convergence [2 lectures]
- Full range, half-range [2 lectures]
- Integration and differentiation of Fourier series [1 lecture]

Partial Differential Equations:
- Wave equation, Heat or diffusion equation, Laplace equation [1 lecture]
- Solution of wave equation, D'alembert solution, separated solution [2 lectures]

Entry Requirements (not applicable to Visiting Students)
Pre-requisites It is RECOMMENDED that students have passed Mathematics for Science and Engineering 1a (MATH08060) AND Mathematics for Science and Engineering 1b (MATH08061)
Co-requisites
Prohibited Combinations Other requirements None
Additional Costs Students are expected to own a copy of :

1. Modern Engineering Mathematics by Glyn James, Prentice Hall,
ISBN 978-0-273-73413-X

2. Advanced Modern Engineering Mathematics by Glyn James,
Prentice Hall, ISBN 978-0-273-71923-6
Information for Visiting Students
Pre-requisitesMathematics units passed equivalent to Mathematics for Science and Engineering 1a and Mathematics for Science and Engineering 1b, or Advanced Higher Mathematics (A or B grade) or Mathematics and Further mathematics A-Level passes (A or B grade).
High Demand Course? Yes
Course Delivery Information
Academic year 2024/25, Available to all students (SV1) Quota:  None
Course Start Semester 1
Timetable Timetable
Learning and Teaching activities (Further Info) Total Hours: 100 ( Lecture Hours 10, Seminar/Tutorial Hours 5, Feedback/Feedforward Hours 2, Summative Assessment Hours 1.5, Revision Session Hours 1, Programme Level Learning and Teaching Hours 2, Directed Learning and Independent Learning Hours 78 )
Assessment (Further Info) Written Exam 50 %, Coursework 50 %, Practical Exam 0 %
Additional Information (Assessment) Written Exam 50%:
Coursework 50%:

Students must pass the exam and the course overall. If you fail a course you will be required to resit it. You are only required to resit components which have been failed.
Feedback Not entered
Exam Information
Exam Diet Paper Name Hours & Minutes
Main Exam Diet S1 (December)Engineering Mathematics 2A1:90
Resit Exam Diet (August)Engineering Mathematics 2A1:90
Learning Outcomes
On completion of this course, the student will be able to:
  1. Calculate the solution of engineering problems described by linear, constant coefficient first and higher order differential equations
  2. Analyse and interpret the solutions to draw conclusions on the system behaviour
  3. Apply the Laplace transform to solve systems of linear, constant coefficient differential equations and to evaluate the stability of dynamic systems
  4. Use Fourier series analysis to approximate periodic functions, solve differential equations and analyse the response of systems to periodic forcing
  5. Distinguish between ordinary and partial differential equations and solve special cases of the wave equation
Reading List
Students are expected to own a copy of :
1. Modern Engineering Mathematics by Glyn James, Prentice Hall,
ISBN 978-0-273-73413-X
2. Advanced Modern Engineering Mathematics by Glyn James,
Prentice Hall, ISBN 978-0-273-71923-6
Additional Information
Graduate Attributes and Skills Not entered
KeywordsOrdinary differential equations,Partial differential equations,Laplace transforms,Fourier series
Contacts
Course organiserDr Daniel Friedrich
Tel: (0131 6)50 5662
Email: D.Friedrich@ed.ac.uk
Course secretaryMr Tom Lawford-Groves
Tel: (0131 6)50 5687
Email: t.lawford-groves@ed.ac.uk
Navigation
Help & Information
Home
Introduction
Glossary
Search DPTs and Courses
Regulations
Regulations
Degree Programmes
Introduction
Browse DPTs
Courses
Introduction
Humanities and Social Science
Science and Engineering
Medicine and Veterinary Medicine
Other Information
Combined Course Timetable
Prospectuses
Important Information