THE UNIVERSITY of EDINBURGH

DEGREE REGULATIONS & PROGRAMMES OF STUDY 2010/2011
- ARCHIVE for reference only
THIS PAGE IS OUT OF DATE

University Homepage
DRPS Homepage
DRPS Search
DRPS Contact
DRPS : Course Catalogue : School of Physics and Astronomy : Undergraduate (School of Physics and Astronomy)

Undergraduate Course: Nuclear Physics (PHYS11041)

Course Outline
School School of Physics and Astronomy College College of Science and Engineering
Course type Standard Availability Available to all students
Credit level (Normal year taken) SCQF Level 11 (Year 4 Undergraduate) Credits 10
Home subject area Undergraduate (School of Physics and Astronomy) Other subject area None
Course website http://www2.ph.ed.ac.uk/~maliotta/teaching.html Taught in Gaelic? No
Course description The course will build on the Subatomic Physics course by further exploring the fundamentals of nuclear matter as well as considering some of the most important applications of nuclear physics. Topics to be studied will include decay modes, nuclear reactions, and nuclear astrophysics. The lecture course will be integrated with problem solving classes.
Entry Requirements
Pre-requisites It is RECOMMENDED that students have passed ( Atomic and Molecular Physics (PHYS10026) OR Quantum Physics (PHYS10043)) AND Subatomic Physics (PHYS10082)
Co-requisites
Prohibited Combinations Other requirements At least 80 credit points accrued in courses of SCQF Level 9 or 10 drawn from Schedule Q.
Additional Costs None
Information for Visiting Students
Pre-requisites None
Displayed in Visiting Students Prospectus? Yes
Course Delivery Information
Delivery period: 2010/11 Semester 2, Available to all students (SV1) WebCT enabled:  No Quota:  None
Location Activity Description Weeks Monday Tuesday Wednesday Thursday Friday
King's BuildingsLecture1-11 09:00 - 09:50
King's BuildingsLecture1-11 09:00 - 09:50
King's BuildingsTutorial1-11 11:10 - 13:00
First Class Week 1, Tuesday, 09:00 - 09:50, Zone: King's Buildings. JCMB
Additional information Workshop/tutorial sessions, as arranged.
Exam Information
Exam Diet Paper Name Hours:Minutes Stationery Requirements Comments
Main Exam Diet S2 (April/May)2:0012 sides
Summary of Intended Learning Outcomes
Upon completion of this course, the student should be able to:

1)identify basic nuclear properties and outline their theoretical descriptions
2)understand the differences between various decay modes, state selection rules, and determine wether a given decay can take place
3)calculate Q-values for alpha and beta decays and for nuclear reactions
4)apply conservation laws to nuclear reactions and transform quantities between laboratory and centre-of-mass frames
5)compare and constrast different reaction mechanisms in relation to cross-sections, excitation functions, and angular distributions
6)summarise and account for the main aspects of at least one application of nuclear physics (e.g. Nuclear Astrophysics)
7)manage to solve problems similar to those discussed in the afternoon sessions
8)develop critical thinking and independent learning, work effectively within a team
9)produce clear and informative written and oral presentations
10)develop judgement capabilities through assessment of their own work and that of others
Assessment Information
Degree Examination, 100%
Special Arrangements
None
Additional Information
Academic description Not entered
Syllabus Not entered
Transferable skills Not entered
Reading list http://www2.ph.ed.ac.uk/~maliotta/teaching/lectures/books.pdf
Study Abroad Not entered
Study Pattern Not entered
Keywords NucPh
Contacts
Course organiser Dr Marialuisa Aliotta
Tel: (0131 6)50 5288
Email: m.aliotta@ed.ac.uk
Course secretary Miss Paula Wilkie
Tel: (0131) 668 8403
Email: paw@roe.ac.uk
Navigation
Help & Information
Home
Introduction
Glossary
Search DPTs and Courses
Regulations
Regulations
Degree Programmes
Introduction
Browse DPTs
Courses
Introduction
Humanities and Social Science
Science and Engineering
Medicine and Veterinary Medicine
Other Information
Timetab
Prospectuses
Important Information
 
copyright 2011 The University of Edinburgh - 31 January 2011 8:14 am